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1 Introduction 

This report is the result of the work guided by the Modeling Workgroup in 2019.  The Modeling 
Workgroup members approved certain sections of this documentation at the July 16-17, 2019 
meeting with Virginia standing aside from all decisions.  The Modeling Workgroup members 
unanimously approved the remaining sections of this document at the October 8-9, 2019 
meeting.  The July documentation was emailed to the Modeling Workgroup and Climate 
Resiliency Workgroup on June 28th.  The October documentation was emailed to the same groups 
on September 24th.   

Table 1-1: Approval status of documentation sections 

Section Topic July 
Approval 

October 
Approval 

November 
Approval 

Does Not 
Require 
Approval 

1 Introduction    X 
2 Meteorology and precipitation X    
3.1 Atmospheric deposition  X   
3.2 Land use X    
3.3 Agricultural inputs X    
3.4 Direct loads X    
4.1 CO2 concentration response X    
4.2 Hydrology simulation X    
4.3 Sediment loss simulation X    
4.4 Nitrogen loss sensitivity  X   
4.5 Phosphorus loss sensitivity  X   
4.6 BMP effectiveness  X   
4.7.1 Nitrogen speciation  X   
4.7.2 Groundwater lag X    
4.7.3 Delivery effects  X   
4.8 Watershed simulation results   X  
5.1.1 Wetlands losses and gains  X   
5.1.2 Wind effects X    
5.1.3 Sea level rise X    
5.1.4 Ocean boundary X    
5.1.5 Tidal flooding loads  X   
5.2 Growth curve modification X    
5.3 Validation of model response  X   
5.4 Estuarine simulation results   X  
6 Management effort adjustment     

 

1.1 Partnership Decision Context 

The EPA and the Chesapeake Bay Program (CBP) partnership put in place the Chesapeake Bay 
TMDL in 2010, setting allocation limits on nitrogen, phosphorus, and sediment from each 
jurisdiction and major basin (U.S. EPA 2010).  The modeling for the TMDL was performed using a 
hydrologic averaging period, 1991-2000, that was judged to represent long-term average 
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precipitation, temperature, and meteorology.  The critical period for meeting dissolved oxygen 
water quality standards is a wetter period within that span, 1993-1995, representing a three-year 
period with a 10-year recurrence interval.   

The averaging period and critical period represent long-term climate norms that will no longer be 
representative of average conditions or a 10-year recurrence interval condition.  The strategy for 
incorporating estimated climate change as of 2025 is to examine the changes expected between 
1995 and 2025.  The 30-year change in climate is to be applied to the CBP modeling data sets and 
the environmental change assessed.  For information and planning purposes, particularly to aid in 
developing a robust 2025 response to climate change risk, the partnership will also examine 
estimated future climate risk expected by 2035, 2045, and 2055. Ultimately the process of 
assessing future climate risk to the Chesapeake watershed and tidal waters will be an iterative 
process of reassessment over periods of about a decade reflecting changes in the science, 
analysis tools, and climate. 

The CBP partnership’s 2017 Midpoint Assessment process resulted in updates to nutrient and 
sediment planning targets consistent with the 2010 Chesapeake Bay TMDL allocations.  The new 
planning targets were based on updates to the CBP’s suite of models, accounting for the influence 
of the changing conditions in the Conowingo Reservoir, and consideration of future population 
and land use change.  Consideration of the effects of climate change on the CBP partnership’s 
ability to reach water quality goals in the Bay was part of the 2017 Midpoint Assessment process 
as well, however, the partnership decided to delay decisions until additional modeling could be 
completed. 

The CBP’s Principals’ Staff Committee (PSC) met in March 2018 and agreed that the jurisdictions’ 
Phase III Watershed Implementation Plans (WIPs) would address climate change narratively and 
numerically.  Specifically, the WIPs would include a narrative strategy describing the jurisdictions’ 
current action plans and strategies to address climate change.  The partnership further 
committed to adopting numerical climate change targets by 2021 using the CBP’s modeling tools.  
Initial estimates were that climate change effects on dissolved oxygen standards were equivalent 
to an increase of 9 million pounds of nitrogen and 0.5 million pounds of phosphorus.  Jurisdictions 
may include numerical adjustments to account for climate change within their current WIPs if 
they choose. 

The PSC agreed to refine the climate modeling and assessment framework based on improved 
understanding of the science of the impacts of climate change.  Research needs will be identified, 
particularly with regard to a better understanding of BMP responses.  New, enhanced, and 
resilient BMPs that better address climate change conditions such as increased storm intensity 
are a focus point. 

In March 2021, the Partnership will consider results of updated methods, techniques, and studies 
and develop an estimate of pollutant load changes (nitrogen, phosphorus, and sediment) due to 
2025 climate change conditions.   In September 2021 jurisdictions will account for additional 
nutrient and sediment pollutant loads due to 2025 climate change conditions in a Phase III WIP 
addendum and/or 2-year milestones beginning in 2022.   Starting with the 2022-2023 milestones, 
the Partnership will determine how climate change will impact the BMPs included in the WIPs 
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and address these vulnerabilities in the two-year milestones.   Figure 1-1 shows a simplified 
timeline of the climate analysis. 

 
Figure 1-1: Climate assessment timeline 

Oversight of the climate change assessment development process will be handled by groups 
within the CBP management structure.  The management questions involving climate change will 
be articulated by the PSC, the Management Board (MB), and the Water Quality Goal 
Implementation Team (WQGIT).  Technical direction for the climate change analysis will be 
handled by the Modeling Workgroup (MWG) and Climate Resiliency Workgroup (CRWG) of 
Scientific, Technical Assessment & Reporting (STAR).  The MWG and CRWG will direct the CBPO’s 
modeling team on technical issues of input data set and modeling response development with 
the advice of the Scientific and Technical Advisory Committee (STAC), and the direction the MB 
and WQGIT. 

1.2 Modeling Framework 

The CBP used a linked system of airshed, land use, watershed, and estuarine models for the 2010 
TMDL (U.S. EPA 2010), the 2011 Phase II WIPs, and the 2017 Midpoint Assessment and associated 
Phase III WIPs.  The CBP has used similar systems dating back to decisions in the 1980s and 1990s 
(Linker et al, 2002).  Figure 1-2 shows a schematic of the system, which is designed to address 
questions of how Chesapeake Bay water quality will respond to changes in management actions.  
The CBP Land Use Change Model predicts changes in land use, sewerage, and septic systems 
given changes in land use policy.  The Airshed Model, a combination of a regression model of 
National Atmospheric Deposition Program (NADP) data and a national application of the 
Community Multiscale Air Quality (CMAQ) Model, predicts changes in deposition of inorganic 
nitrogen due to changes in emissions.  The Watershed Model combines the output of these 
models with other data sources, such as the US Census of Agriculture, and predicts the loads of 
nitrogen, phosphorus, and sediment that result from the given inputs.  The estuarine Water 
Quality and Sediment Transport Model (WQSTM) predicts changes in Bay water quality due to the 
changes in input loads provided by the Watershed Model. 

2018
STAC Workshop

Partnership 
Decisions on 
schedule

2019
The Modeling WG 
and Climate 
Resiliency WQ 
direct the 
Modeling team to 
develop climate 
change 
assessment for 
TMDL

2020
Technical Review 
of Models

2021
Climate change 
considerations will 
be implemented 
into the 2022-
2023 milestones. 
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Figure 1-2: the Chesapeake Bay Program partnership’s modeling system 

The Phase 6 Watershed Model consists of two parallel models:  a time-averaged model and a 
dynamic model, which is constrained to match the time-averaged model over the long term.  The 
time-averaged model, known as the Chesapeake Assessment Scenario Tool (CAST) (Chesapeake 
Bay Program 2017) is used as the primary model for decision making.  Stakeholders and other 
users can access CAST through a web interface at http://cast.chesapeakebay.net/.  The dynamic 
model is used in calibration of the Phase 6 system, to translate CAST scenarios into hourly loads 
of nutrients and sediment for the estuarine model, and to perform research.  For the climate 
change analysis, changes will be made to both CAST and the dynamic model.  The dynamic model 
will run with projected precipitation and meteorology input data to predict changes in hydrology 
and sediment.  These changes will be used in CAST, along with additional investigation using 
multiple lines of evidence, to predict changes in nitrogen and phosphorus loads delivered to large 
rivers.  Finally, the modeling team will use the dynamic model to temporally disaggregate the 
predictions of CAST, simulate the effects in large rivers, and pass loads to the estuarine model.  
Further description of the Phase 6 Watershed Model is available on the CAST documentation 
page (http://cast.chesapeakebay.net/Documentation/ModelDocumentation).  The relationship 
between CAST and the dynamic model is described in Section 1.  The dynamic model is described 
in Section 10.  

The modeling system used for all analyses December 2017 through July 2018 that resulted in the 
Phase III planning targets is in large part the same system used for the climate assessment.  Some 
significant changes were made to accommodate climate-related analysis as detailed in this 
document.1  Other minor changes such as the inclusion of new land use and BMP information for 
future scenarios may also be included per partnership decisions unrelated to climate change.  
Due to the changes made to the modeling system, the scenarios are not directly comparable to 

 
1 Other minor changes such as the inclusion of new land use and BMP information for future scenarios may also be 
included per partnership decisions unrelated to climate change.   

http://cast.chesapeakebay.net/
http://cast.chesapeakebay.net/Documentation/ModelDocumentation
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scenarios that were run during the 2017 Midpoint Assessment.  The climate change analysis will 
consist of new scenarios that will be compared to estimate the overall effect of climate change on 
water quality standards (U.S. EPA, 2010). 

Models by their nature are imperfect representations of reality and are based on the best 
available data, knowledge, and computational power available at the time of their development 
and application.  The analysis for the 2021 climate decisions will represent the current best 
estimate.  It is anticipated that the CBP will reassess the TMDL progress relative to climate change 
and other factors in 2025 and later years in an iterative process.  

1.3 Climate Effects Simulated 

 
Figure 1-3: Simplified conceptual model of climate effects on dissolved oxygen water quality standards.  Red arrows denote an 
increase in violation of standards.  Green arrows denote a decrease. 

Figure 1-3 illustrates the main effects of climate change on the dissolved oxygen in tidal waters.  
Increased precipitation volume is expected to increase the runoff of nitrogen, phosphorus, and 
sediment, which in isolation would lead to an increase in non-attainment of dissolved oxygen 
water quality standards.  This is indicated in the figure by an upward facing red arrow.  An 
increase in evapotranspiration caused by an increase in temperature will lead to a decrease in 
runoff, which in turn will lead to a decrease in nutrients and sediment and a decrease in non-
attainment of dissolved oxygen standards, indicated by a downward facing green arrow.  
Increased precipitation intensity in isolation would cause an increase in sediment and particulate 
nutrient runoff leading to an increase in dissolved oxygen non-attainment.  Increased 
temperatures in the Bay lowers the solubility of oxygen in water and increases respiration which 
has a negative effect on attainment.  Sea level rise and increased watershed flows, in isolation, 
increase the circulation in the Bay, leading to improved attainment of standards. 
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Figure 1-4: Detailed conceptual model of processes affecting dissolved oxygen water quality standards, indicating inclusion or non-
inclusion in the CBP climate assessment 

Figure 1-4 is a detailed conceptual model of the processes considered in the CBP climate 
assessment.  The above figure was used to guide the CBP in determining the effects to directly 
include in the analysis.  Climate change affects the majority of the inputs and processes in the 
modeling system.  The CBP considered a wide array of effects and made decisions to include 
those processes which were both well understood and judged to have a significant effect on 
water quality standards.  Some processes left out of the analysis could be important but are 
without sufficient data and understanding to include them.  

For the assessment of climate change impacts in the Chesapeake watershed, the primary 
variables considered were precipitation volume, precipitation intensity, temperature, and 
evapotranspiration.  Estimates of the influence of sea level rise, increased ocean inflow, air 
temperature, and tidal wetland loss were incorporated into the Water Quality and Sediment 
Transport Model (WQSTM) of the tidal Bay and are documented there (Cerco and Noel 2019).   

1.4 Input from the CBP’s Scientific and Technical Advisory Committee 

The CBP’s Scientific and Technical Advisory Committee (STAC) has conducted several assessments 
of climate science and has recommended processes for integrating consideration of climate 
change into the Bay Program’s management framework.  STAC proactively authored a report on 



 
12 

the likely effects of climate change (Pyke et al. 2008).  STAC encouraged the CBP to consider the 
effects of sea level rise, temperature, and increasing variability of salinity and hydrology on 
hypoxia and on living resources including algal, submerged aquatic vegetation, and fish 
communities.  STAC asked the CBP to understand the implications of climate change for 
important management decisions, update monitoring systems, and take action to mitigate the 
effects of climate change. 

A 2011 STAC workshop on climate change (Pyke 2012; Pyke et al. 2012) produced a 
recommendation that climate change be embedded within the CBP decision-making structure.  
The response from the CBP (DiPasquale 2014) indicated that the CBP agreed and that a new 
climate resiliency position was being created and that the concept was consistent with the 2009 
executive order (Office of the President, 2009) and the 2014 Bay Agreement (Chesapeake 
Executive Council 2014).  The 2014 agreement explicitly called for climate change considerations 
to be part of all CBP goals and outcomes.  STAC recommended focusing on specific problems, 
identified through assessments of vulnerability, and developing the technical capacity to address 
these issues.  The inclusion of climate change in the 2017 Midpoint Assessment follows these 
principles.  The recommendations were communicated to the CBP’s Executive Council as well 
(STAC 2011). 

A 2016 STAC workshop on climate projections assessed available climate data for use in the CBP 
decision process (Johnson et al. 2016; Wainger 2016).  STAC recommended that the assessment 
should be as comprehensive as possible.  Specific recommendations included the use of historical 
precipitation trends for 2025 while carefully considering evapotranspiration.  For assessments 
after 2017, STAC recommended a 2050 time frame using multiple models to estimate response.  
The recommendations and guidance provided by the Chesapeake Bay Program’s Climate 
Resiliency Workgroup (CRWG) (CBP 2016) rely heavily on the 2016 STAC workshop.  A follow-up 
2017 STAC workshop, not published as of this writing, generated specific near-term and long-
term recommendations for watershed and estuarine modeling, and methods of model 
application. 
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2 Estimates of Changes in Meteorology and Precipitation 

2.1 Climate Change Scenarios 

Climate change assessments for the years 2025 and 2050 rely on robust estimates of changes in 
precipitation and temperature, and the CBP has utilized a combination of trend analysis and 
global climate models (GCMs) for these projections. The CBP’s methods for developing the 
climate projections are based on recommendations provided by the 2016 STAC workshop The 
Development of Climate Projections for Use in Chesapeake Bay Program Assessments (Johnson et 
al. 2016).  The recommendation of STAC was to use long-term observed precipitation trends 
instead of climate model projections to assess expected changes in precipitation for the year 
2025, as the uncertainty of the models introduced more variability for this near future than 
extrapolation of the trend.  For 2050 precipitation estimates, STAC recommended climate models 
used for assessing anticipated changes in precipitation that were based on the Coupled Model 
Intercomparison Project Phase 5 (CMIP5) set of Global Climate Models (GCMs) as outlined in the 
Intergovernmental Panel on Climate Change’s Fifth Assessment Report (IPCC AR5, 2013).  It was 
also recommended that these models be employed in the assessment of expected temperature 
change for both 2025 and 2050, as the model projections of temperature change are much less 
variable for both the short and long-term projections.  Decisions by the Chesapeake Bay 
Program’s Modeling Workgroup on 4/2/2019 affirmed the recommendations of the STAC 
workshop (Johnson et al, 2016). 

Subsequent to the STAC workshop, the years 2025, 2035, 2045, and 2055 were selected for the 
climate change impacts assessment by the Modeling Workgroup rather than 2025 and 2050.  The 
Phase 6 Watershed Model was used to assess expected changes in 2025 precipitation based on 
historical observed trends within the watershed.  Climate models were used precipitation in 2050 
and beyond, while 2035 and 2045 were interpolated between the two approaches.  Expected 
changes in 2025, 2035, 2045, and 2055 temperatures were extracted from the models 

The GCM projections of rainfall and temperature changes used in the assessment were based on 
the Representative Concentration Pathway (RCP) 4.5.  Forcing for the GCMs were determined by 
the RCPs, which are each characterized by potential future socio-economic and natural 
conditions.  The RCPs are defined according to the additional radiative forcing generated by the 
year 2100 measured in watts per square meter (W/m2); for example, RCP 4.5 projects an increase 
in radiative forcing of 4.5 W/m2.  Additional analyses based upon RCP 2.6 and RCP 8.5 could be 
used to further develop the assessment to include a range of potential future climates.  However, 
due to computational and analysis constraints only a limited number of key climate scenarios 
were simulated with the linked watershed and estuarine models to quantify the range of climate 
change impacts. 

2.1.1 Long-term Observed Trends in Precipitation 

The STAC Workshop Report, “The Development of Climate Projections for Use in the Chesapeake 
Bay Program Assessments” (Johnson et al. 2016), recommends using long-term observations to 
estimate the 30-year (1995 - 2025) change in precipitation volume that can be attributed to 
climate change. Precipitation trends for model land segments (counties) were developed by 
analyzing Parameter-elevation Relationship on Independent Slope Model (PRISM, Daly et al. 
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2008) rainfall data. A linear trend analysis was conducted with annual PRISM rainfall data as 
recommended by Jason Lynch, EPA, and Karen Rice, USGS.  The PRISM dataset is a reanalysis 
product that uses point data measurements at rain gauges and incorporates a conceptual 
framework to address spatial variably in rainfall due to orographic and other processes. The long-
term PRISM dataset (1895-1980) is modeled at 30 arc second (approx. 800 m) grid cell resolution 
but then upscaled to provide monthly total rainfall at 2.5 arc minute (approx. 4-km) grid cell 
resolution for the conterminous U.S.  The annual PRISM dataset for the years 1927 to 2014 (i.e. 
88 years) were used in the linear regression trend analysis.  The selection of the 88-year period 
was made because of easy accessibility of the dataset.  For the analysis, gridded PRISM data were 
first spatially aggregated to each Phase 6 land segment, and then for each segment, a linear trend 
line was fitted to the annual rainfall data. 

Figure 2-1 shows the regression analysis for two counties, where the linear slopes indicate 2.67% 
and 3.14% increases in average annual rainfall volumes as compared to the reference 1991-2000 
conditions.  Since regression analysis was done for annual rainfall volumes, the resulting linear 
slope does not provide information on changes at monthly or seasonal time scale.  Therefore, the 
percent change in average annual rainfall was used for every month.  Figure 2-15 shows the 
increase in annual rainfall over the 30-year period between 1995 and 2025 estimated using the 
trends for the land segments in the Chesapeake Bay watershed. 

 
Figure 2-1: Annual rainfall volumes for the 88-year period linear regression lines are shown in red for the two land segments 
(counties) – (a) Centre County in Pennsylvania and (b) District of Columbia.  The values for the slope of the regression lines, and the 
corresponding 30-year projections in the rainfall volume (1995 to 2025) are also shown. 
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Trend information derived from a short-term (e.g. 30 years) rainfall dataset may be influenced by 
decadal-scale variations in climate as well as weather anomalies.  The influence of such variations 
can be more easily detected and reduced using longer-term data, however, it was not clear if the 
use of an 88-year record would be sufficient for overcoming such decadal-scale variabilities.  The 
CBPO modeling team conducted an analysis of long-term rainfall data to investigate this. Different 
lengths of historical observations were used for estimating the linear trend and the corresponding 
percent change in annual rainfall over a 30-year period. A total of 59 sets ranging between most 
recent 30 years to 88 years of historical observations were analyzed.  The goal was to test the 
influence of number of years on the linear trend estimate, and on how the decadal and natural 
variabilities impacted the resulting trend. A set of same color dots in Figure 2-2 shows the 
estimated percent change in annual rainfall volume for 30 years based on linear trends calculated 
from those 59 sets for a land segment (or county). The analysis was repeated for several counties 
(Figure 2-2). It was found that, although not perfect, the 88-year record came pretty close to 
overcoming cyclical climatic variabilities as the estimated percent change became more stable.  It 
is noted that for a given county the estimated change varied quite a bit when data for 30 to 60 
years were selected but became stable for greater numbers of years, as shown in Figure 2-2. 

 
Figure 2-2: Estimated change in rainfall based on the extrapolation of linear trends are shown.  For the estimation of linear trends 
historical observations ranging between last 30 to 88 years used.  It was shown that a level of consistency was achieved after more 
than 80 years of observations were used in the estimation of linear trend. 

2.1.2 General Circulation Models and Representative Concentration Pathways 

General circulation models (GCMs) included in the most recently completed Coupled Model 
Intercomparison Project Phase 5, CMIP5 (Taylor et al. 2012) were used for the rainfall and 
temperature projections.  As compared to CMIP3, the CMIP5 dataset provides incrementally 
refined climate projections that include more comprehensive models with a broader set of 
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experiments, higher spatial resolution for models, and an expanded set of output variables for 
both the near-term (decadal predictions) and long-term (century time scale).  The list of GCMs 
and model runs included in the CMIP5 is provided in Table 2-1. 

The set of climate models in the U.S. Climate Resilience Toolkit (CRT) (NOAA 2014) (accessed 
2016) were used in the development of climate scenarios for the Phase 6 application except that 
the CBP did not use the BNU-ESM model, which was unavailable for download.  Statistically 
downscaled climate models and corresponding realizations were retrieved from an online archive 
accessed through the Geo Data Portal (Bureau of Reclamation, 2013).  The decision to use an 
existent downscaled dataset rather than either developing or applying a tailored statistical 
climate downscaling process was based upon the recommendations of the STAC workshop 
(Johnson et al. 2016).  The Bias Corrected Spatial Disaggregation (BCSD) downscaling 
methodology was chosen for the assessment because of its commonality among numerous 
datasets including the U.S. Climate Resilience Toolkit and the NASA Earth Exchange (NEX) 
Downscaled Climate Projections (NEX-DCP30), its extensive review in peer-reviewed literature in 
comparison with other downscaling methodologies (Gutmann et al. 2014; Mizukami et al. 2016), 
and its relative ease of access and flexibility in choosing models and realizations to be 
incorporated into analyses.  The downscaled dataset was among the ones recommended by the 
data.gov climate data catalog. Still, it may benefit future regional climate assessment to consider 
other datasets based on downscaling techniques that are also capable of producing reliable 
correlations with observed precipitation and temperature such as the Multivariate Adaptive 
Constructed Analogs (MACA) or Localized Constructed Analogs (LOCA) methodologies (Demirel 
and Moradkhani 2016; Pierce and Cayan 2015). 

The GCMs utilize forcings based on potential future socio-economic and natural scenarios defined 
as Representative Concentration Pathways (RCPs).  The RCPs are categorized according to the 
additional radiative forcing generated by the year 2100 relative to pre-industrial values as 
measured in Watts per square meter (Wm-2).  The additional radiative forcing is a measure of the 
cumulative impact of future anthropogenic greenhouse gas emissions.  The four RCPs, RCP 2.6, 
RCP 4.5, RCP 6.0, and RCP 8.5 were adopted by the IPCC in its Fifth Assessment Report (AR5) to 
represent possible future trajectories of greenhouse gas concentrations.  These concentration 
pathways are used in the climate model simulations to estimate four possible climate futures.  
However, it has been shown that the spread across RCPs in the near term for a single climate 
model is typically smaller than the difference between climate models under a single RCP 
scenario (Kirtman et al. 2013). 

Table 2-1: A multi-model ensemble of statistically downscaled CMIP5 projections was used.  “Downscaled CMIP3 and CMIP5 
Climate and Hydrology Projections” archive at http://gdodcp.ucllnl.org/downscaled_cmip_projections was used for obtaining 
rainfall and temperature projections that were statistically downscaled using Bias Corrected Spatially Disaggregated method 
(Maurer et al. 2007).  The symbol “Y” represents the member “model-runs” that were included as the ensemble analysis, whereas 
“x” indicates data for the model-run that were available but not included, and “o” indicates data for the model-run that were 
unavailable. 

WCRP CMIP5 Modeling 
Workgroup 

WCRP CMIP5 
Climate Model 

Model Run 

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 

ACCESS1-0  Y o o o o o o o o o o o 

http://gdo-dcp.ucllnl.org/downscaled_cmip_projections/dcpInterface.html#Welcome
http://cida.usgs.gov/gdp/
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Commonwealth Scientific and 
Industrial Research 
Organization and Bureau of 
Meteorology, Australia  

ACCESS1-3  x o o o o o o o o o o o 

Beijing Climate Center, China 
Meteorological Administration  

BCC-CSM1-1  Y o o o o o o o o o o o 

BCC-CSM1-1-M  Y o o o o o o o o o o o 

College of Global Change and 
Earth System Science, Beijing 
Normal University  

BNU-ESM  o o o o o o o o o o o o 

Canadian Centre for Climate 
Modelling and Analysis  CanESM2  Y x x x x o o o o o o o 

National Center for 
Atmospheric Research  CCSM4  Y x x x x o o o o o o o 

Community Earth System 
Model Contributors  

CESM1-BGC  Y o o o o o o o o o o o 

CESM1-CAM5  Y x x o o o o o o o o o 

Centro Euro-Mediterraneo per 
I Cambiamenti Climatici  CMCC-CM  Y o o o o o o o o o o o 

Centre National de 
Recherches Météorologiques/ 
Centre Européen de 
Recherche et Formation 
Avancée en Calcul 
Scientifique  

CNRM-CM5  Y o o o o o o o o o o o 

Commonwealth Scientific and 
Industrial Research 
Organization, Queensland 
Climate Change Centre of 
Excellence  

CSIRO-Mk3-6-0  Y x x x x x x x x x x x 

EC-Earth consortium, 
representing 22 academic 
institutions and meteorological 
services from 10 countries in 
Europe  

EC-EARTH  o Y o o o o o x o o o x 

Laboratory of Numerical 
Modeling for Atmospheric 
Sciences and Geophysical 
Fluid Dynamics, Institute of 
Atmospheric Physics, Chinese 
Academy of Sciences, and 
Center for Earth System 
Science, Tsinghua University  

FGOALS-g2  Y o o o o o o o o o o o 

Laboratory of Numerical 
Modeling for Atmospheric 
Sciences and Geophysical 
Fluid Dynamics, Institute of 
Atmospheric Physics, Chinese 
Academy of Sciences  

FGOALS-s2  o x o o o o o o o o o o 
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The First Institute of 
Oceanography, State Oceanic 
Administration, China  

FIO-ESM  Y x x o o o o o o o o o 

NOAA Geophysical Fluid 
Dynamics Laboratory  

GFDL-CM3  Y o o o o o o o o o o o 

GFDL-ESM2G  Y o o o o o o o o o o o 

GFDL-ESM2M  Y o o o o o o o o o o o 

NASA Goddard Institute for 
Space Studies  

GISS-E2-H-CC  x o o o o o o o o o o o 

GISS-E2-R  Y x x x x o o o o o o o 

GISS-E2-R-CC  x o o o o o o o o o o o 

Met Office Hadley Centre 
(additional HadGEM2ES 
realizations contributed by 
Instituto Nacional de 
Pesquisas Espaciais)  

HadGEM2-AO  Y o o o o o o o o o o o 

HadGEM2-CC  Y o o o o o o o o o o o 

HadGEM2-ES  Y x x x o o o o o o o o 

Institute for Numerical 
Mathematics  INM-CM4  Y o o o o o o o o o o o 

Institut Pierre-Simon Laplace  IPSL-CM5A-LR  Y x x x o o o o o o o o 

IPSL-CM5A-MR  Y o o o o o o o o o o o 

IPSL-CM5B-LR  Y o o o o o o o o o o o 

Japan Agency for Marine-
Earth Science and 
Technology, Atmosphere and 
Ocean Research Institute (The 
University of Tokyo), and 
National Institute for 
Environmental Studies  

MIROC-ESM  Y o o o o o o o o o o o 

MIROC-
ESMCHEM  Y o o o o o o o o o o o 

Atmosphere and Ocean 
Research Institute (The 
University of Tokyo), National 
Institute for Environmental 
Studies, and Japan Agency for 
Marine-Earth Science and 
Technology  

MIROC5  Y o o o o o o o o o o o 

Max-Planck-Institut für 
Meteorologie (Max Planck 
Institute for Meteorology)  

MPI-ESM-LR  Y x x o o o o o o o o o 

MPI-ESM-MR  Y o o o o o o o o o o o 

Meteorological Research 
Institute  MRI-CGCM3  Y o o o o o o o o o o o 

Norwegian Climate Centre  NorESM1-M  Y o o o o o o o o o o o 

NorESM1-ME  x o o o o o o o o o o o 
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2.1.3 Bias Correction and Downscaling of the Climatic Projections 

The Bias Corrected and Spatially Disaggregated (BCSD) statistically downscaled CMIP5 climate 
projections were downloaded from the "Downscaled CMIP3 and CMIP5 Climate and Hydrology 
Projections" archive available at http://gdo-dcp.ucllnl.org/downscaled_cmip_projections/ 
(Maurer et al. 2007; Reclamation 2013).  The online data archive provides output of GCMs that 
were statistically downscaled using the BCSD methodology that employed a quantile mapping 
technique for several GCMs. The archive also included several “model-runs” or “realizations” for a 
number of GCMs.  The “model-runs” incorporate perturbations of initial conditions to provide a 
spread of possible outcomes. However, the selection of several GCMs over several model-runs for 
a particular GCM provides wider variability that enables an ensemble analysis to capture a fuller 
range of uncertainties in model projections (Pierce et al. 2009). In addition, selecting one 
realization per model constrains biases for models with more realizations. Subsequently, 31 
GCMs that were included in the ensemble analysis are shown in Table 2-1. The selection was 
based on models used by the U.S. Climate Resiliency Toolkit (which itself relies upon the NASA 
NEX-DCP30 database) and the recommendation of the Chesapeake Bay Program’s Climate 
Resiliency Workgroup.  

Bias correction methods remove systematic climate model errors at regional scales, whereas the 
downscaling methods resolve finer scale climatological features, providing an improved dataset 
for applications in local scale impact analyses.  The bias corrected data for every GCM are is 
forced to match the monthly cumulative density functions of observed rainfall at the regional 
scale.  This is shown in Figure 2-3, where the dashed black lines represent the observed data, the 
red lines represent the hindcast simulations for the period 1950-1999 simulated by GCMs at a 
spatial grid of 2°, and the green lines represent the bias corrected dataset for all GCMs.  The 
green line for all of the GCMs and the observations are situated on top of one another 
demonstrating that the bias corrected GCMs match the observed distributions. The quantile 
maps, which establish a tabular relationship between the rank probability and bias in the hindcast 
dataset, were applied to the future projections.  This approach preserves the same relative 
changes projected by the GCMs in mean, variance, and other statistical moments of the data. 

Dynamical downscaling, which involves the use of a finer scale regional climate model (RCM), 
offers a better representation of a local study area nested within a GCM domain and can simulate 
local fine-scale feedback processes that are not anticipated by statistical downscaling. However, 
for hydrological applications, statistically downscaled climate projections using the BCSD method 
have been shown to exhibit comparable fidelity as compared to other statistical and dynamical 
methods (Wood et al. 2004).  Moreover, the climate change projections obtained using BCSD 
have been found to provide similar strengths and weaknesses as compared to Bias Correction 
Constructed Analogues, BCCA, and Multivariate Adaptive Constructed Analogues (MACA) (Maurer 
et al. 2010; Abatzoglou and Brown 2011). 
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Figure 2-3: Bias corrected GCM outputs. Monthly bias corrections of rainfall data using a quantile mapping technique are shown 
(from Reclamation, 2013).  Red lines show model output, dashed black lines show observations, and the green lines show the bias 
corrected GCM outputs. 

2.1.4 The Ensemble Analysis 

A widely used technique in climate change assessments involving the use of projections from 
multiple climate models is to combine ensembles of predictions from a collection of models.  This 
approach allows increasing the sampling of both initial conditions and model properties in the 
subsequent climate change assessment.  Furthermore, it has been shown that multi-model 
ensemble means generally exhibit higher skill, e.g., in capturing Atlantic Multi-decadal Variability, 
as compared to a single-model projection (Garcia-Serrano and Doblas-Reyes 2012; Kim et al. 
2012; Kirtman et al. 2013). 

Figure 2-4 shows monthly percent changes in rainfall volume and temperature changes in degrees 
Celsius for the 31-member ensemble described in Table 2-1.  The modeled change between the 
years 2050 (2036-2065) and 1995 (1991-2000) are shown.  The median change of the ensemble 
members for each month are also shown.  For the ensemble median scenario, changes in monthly 
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rainfall volume and temperature for each land segment were applied to the 1991-2000 rainfall 
and temperature dataset, respectively. 

 
Figure 2-4: The monthly percent change in rainfall volume and degrees Celsius difference for the 31-member ensemble of the RCP 
4.5 scenario are shown.  Each data point represents the monthly difference between the average monthly temperature and 
precipitation volume between the periods 2036-2065 and 1981-2010. For year 2050, monthly median ensembles were used as the 
central tendency for the climate change assessment, whereas the 10th and 90th percentiles were used for uncertainty 
quantification. 

 

Figure 2-5 and Figure 2-6 show the spatially averaged changes in precipitation and temperature, 
respectively, for the Chesapeake Bay watershed.  Projected changes are compared for the years 
2025 and 2050 relative to 1995 for three emission scenarios RCP 2.6, RCP 4.5, and RCP 8.5.  The 
box plots show the ensemble distribution of projected change based on the ensemble of GCMs.  
Figure 2-5 shows that, for precipitation, the ensembles medians of different RCPs are similar and 
that the range between the 10th and 90th percentiles of RCP 4.5 includes the interquartile ranges 
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of RCP 2.6 and RCP 8.5 for both 2025 and 2050.  Figure 2-6 shows that, for temperature change 
between 1995 and 2025, the 10th, 50th, and 90th percentiles for the three emission scenarios are 
all similar.  Projections for the year 2050 show large differences in ensemble medians for the 
emission scenarios, however the uncertainty range for RCP4.5 considerably overlaps the RCP 2.6 
and RCP 8.5 range.  For both precipitation and temperature, and in both 2025 and 2050, the 
variability due to model selection is greater than the variability due to emission scenarios and 
therefore the RCP 4.5 is used for the CBP climate projections for 2025, 2035, 2045, and 2055. 

 
Figure 2-5: Percent change in rainfall volume for the Chesapeake Bay watershed for the years 2025 and 2050 relative to 1995 are 
shown. Box plots show variability in the ensemble of GCM projections. Ensemble median (circles) and 10th and 90th percentile 
(triangles) range are shown. 
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Figure 2-6: Percent change in temperature for the Chesapeake Bay watershed for the years 2025 and 2050 relative to 1995 are 
shown. Box plots show variability in the ensemble of GCM projections. Ensemble median (circles) and 10th and 90th percentile 
(triangles) ranges are shown. 

 

2.1.5 Projected Changes in Precipitation Intensity 

The capability to change precipitation by deciles was incorporated into the analysis.  Changes in 
rainfall volume were divided among intensity deciles based on documented changes in intensity 
and frequency of precipitation events using a century of observations (Groisman et al. 2004; 
Groisman et al. 2001; Karl and Knight 1998, Gordon et al. 1992).  The observed increases in larger 
precipitation events (Groisman et al. 2004) was the basis for assigning the total percent change in 
precipitation volume disproportionately to intensity deciles. Following Groisman et al. (2004), the 
larger share of the increase in estimated precipitation volume due to climate change was placed 
in the highest decile (90 to 100 percent) of intensity (Figure 2-7). 

For comparison, a model sensitivity scenario was also developed that applied a uniform 
distribution for the increased rainfall volume estimate due to climate change among intensity 
deciles.  In future, further analysis of rainfall intensity should explore the alteration of 
precipitation intensities based upon different downscaled projections and its subsequent impacts 
on the watershed responses. 
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Figure 2-7: Observed changes in rainfall intensity over the last century (based on Figure 10 in Groisman et al. 2004).  The equal 
allocation distribution (blue) is contrasted with the distribution obtained based on observed changes (red).   

 

2.1.6 Application of the Delta Method 

For hydrological applications and the impact analysis of linked natural systems, it is critical to 
maintain physically plausible spatial and temporal relationships between rainfall and other 
meteorological variables.  Therefore, it is important that multiple variables are simultaneously 
downscaled at the regional scale.  However, these relationships are not maintained by most of 
the statistical downscaling methods. The delta method is the creation of future meteorological 
time series by starting with a historical observed time series and applying change factors 
calculated from a modeled or statistical estimate of the effects of climate change.  The use of a 
delta change method preserves the spatial and temporal relationship between the rainfall and 
meteorological variables in the observed reference data that was used for model calibration.   

The Phase 6 Watershed Model was calibrated to the rainfall and meteorological data obtained 
from the NLDAS-2 database (Xia et al. 2012).  Monthly changes to the NLDAS temperature data 
for future climate scenarios were calculated based on the median change in the model ensemble 
as described in Section 2.1.4.  Monthly changes to the NLDAS precipitation data for the 2050 
climate scenarios were calculated based on the median change in the model ensemble as 
described in Section 2.1.4.  Monthly changes to the NLDAS precipitation for 2025 were based on 
long-term trends as described in Section 2.1.1. Changes in the precipitation data for the years 
2035 and 2045 were interpolated between the two methods.   

An appropriate selection of time-disaggregation procedures is needed for the application of 
monthly delta change to the reference dataset.  For the time-disaggregation of monthly rainfall 
change, the monthly change in volume was divided into 10 rainfall intensity deciles based on an a 
priori distribution (Figure 2-7).  Two methods were used for the quantile distributions (Figure 2-7).  
In the first method, additional precipitation volume was divided equally among the 10 quantiles, 
whereas in the second method the documented changes in observed rainfall intensities over the 
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last century were used.  As a result, the second method allocates more rainfall volume to the 10th 
decile (largest 10% events) of rainfall in the average hydrology period from 1991-2000 (Figure 
2-8).  In both methods, the change in rainfall is applied as a monthly factor multiplying each hour 
of rainfall.  For all scenarios, the change in temperature is applied as a monthly-varying additive 
value. 

 
Figure 2-8: Additional rainfall added to the baseline daily rainfall over the 10-year period for a Phase 6 land segment (Potter, PA) is 
shown.  In the method based on observed intensity trends, more volume is added to 10th decile resulting in higher intensity events 
become stronger.  

2.1.7 Altered CO2 Concentrations 

Anticipated values of carbon dioxide concentrations were compiled from the IPCC’s 5th 
Assessment Report for different emission scenarios (Figure 2-9).  Carbon dioxide concentration 
levels of approximately 423 ppm and 487 ppm were obtained for the Representative 
Concentration Pathway (RCP) 4.5 for 2025 and 2050, respectively (IPCC, 2013: Annex II, Table 
AII.4.1).  This is compared to 363 ppm for the average concentration for the years 1991-2000.  
Going forward, modifications to CO2 concentrations based upon different RCP scenarios could 
also be simulated, depending upon the year and scenario of choice. 
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  Figure 2-9: Equivalent CO2 concentration from IPCC 5 Worgking Group 1 report (Cubasch et al. 2013)  

 

 

Table 2-2: CO2 abundance table All.4.1 of IPCC, 2013: Annex II: Climate System Scenario Tables In: Climate Change 2013: The 
Physical Science Basis  

Year Observed RCP2.6 RCP4.5 RCP6.0 RCP8.5 

PI 278 ± 2 278 278 278 278 

2011 obs 390.5 ± 0.3         

2000   368.9 368.9 368.9 368.9 

2005   378.8 378.8 378.8 378.8 

2010   389.3 389.1 389.1 389.3 

2020   412.1 411.1 409.4 415.8 

2030   430.8 435.0 428.9 448.8 

2040   440.2 460.8 450.7 489.4 

2050   442.7 486.5 477.7 540.5 

2060   441.7 508.9 510.6 603.5 

2070   437.5 524.3 549.8 677.1 

2080   431.6 531.1 594.3 758.2 

2090   426.0 533.7 635.6 844.8 

2100   420.9 538.4 669.7 935.9 
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2.1.8 Estimates of Potential Evapotranspiration 

Potential evapotranspiration (PET) is generally estimated as a function of temperature, dew point 
temperature, wind speed, stomatal resistance, and other factors.  The Phase 6 Model calibration 
uses the Hamon method for the estimation of PET (Equation 2-1).  In the early development 
stages of the Phase 6 Model, the Hamon method was used for estimating changes in PET with 
climate change, specifically in response to changes in temperature, which was consistent with 
methods of climate change assessment in the Phase 5 Model.  In response to the climate change 
simulation of Phase 5 Model as well as some of the early assessment using Phase 6 Model, STAC 
recommended careful considerations of the PET methods (Johnson et al. 2016). 

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝐷𝐷𝐻𝐻𝐷𝐷𝐷𝐷𝐷𝐷 𝑃𝑃𝑃𝑃𝑃𝑃 =  0.0055 × 𝑉𝑉𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠 × �𝐷𝐷𝐻𝐻𝐷𝐷𝐷𝐷𝐷𝐷 𝐷𝐷𝐷𝐷𝑙𝑙ℎ𝑡𝑡 ℎ𝐻𝐻𝑜𝑜𝑜𝑜𝑜𝑜
12� �

2
 

Equation 2-1 

𝑉𝑉𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠 = 216.7 ×
𝑉𝑉𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠

�𝑃𝑃𝑠𝑠𝑎𝑎𝑎𝑎 + 273.3�
 

𝑉𝑉𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠 =  6.108 × 𝑒𝑒
17.26939×𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎
𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎+237.3  

Where: 
PET = potential evapotranspiration, mm/day 
VDsat = saturated vapor density, gram/m3 
Tavg = average daily temperature, degree Celsius 
VPsat = saturated vapor pressure, millibars 
 
To a large extent the simulated impact of climate change on the water budget of the watershed 
relies on the estimated PET.  Therefore, the selection of PET method plays a very critical role.  The 
Hamon method relies upon the temperature, the saturated water vapor density (also a function 
of temperature), and the number of daylight hours as inputs in calculating PET (Equation 2-1).  As 
a result, the estimation of climate effects on PET in the Hamon method is solely a function of 
temperature.  Milly (2016) showed an analysis of different PET methods, which demonstrated 
that Hamon method overestimated the impact of temperature change on the PET as compared to 
other methods, including Penman-Monteith (Figure 2-10). The Penman-Monteith equation is 
frequently relied upon for the estimation of PET in several watershed models for its more 
physically based approach.  However, the Penman-Monteith equation requires several additional 
meteorological variables which are often hard to obtain.  That was particularly the case for the 
downscaled climate change inputs that were available.  The Hargreaves-Samani approach 
(Equation 2-2), on the other hand, uses readily available parameter variables as with Hamon but 
provides an estimated relationship of PET with temperature more similar to Penman-Monteith 
(Figure 2-10).  For that reason, the Hargreaves-Samani method was used for estimating the 
change in PET. The estimated daily change was added as a factor to the hourly reference PET 
dataset. The Phase 6 Model simulation showed improved simulation results that were more 
consistent with streamflow trends (U.S. EPA. 2016a; Rice et al. 2017) when the change in PET was 
estimated using Hargreaves-Samani method rather than Hamon, which produced unrealistically 
drier conditions due to higher sensitivity to temperature. 
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Equation 2-2: Hargreaves-Samani PET equation 

𝐻𝐻_𝑆𝑆 𝐷𝐷𝐻𝐻𝐷𝐷𝐷𝐷𝐷𝐷 𝑃𝑃𝑃𝑃𝑃𝑃 = 0.0135 × 𝑅𝑅𝑠𝑠 × �𝑃𝑃𝑠𝑠𝑎𝑎𝑎𝑎 + 17.8� 

𝑅𝑅𝑠𝑠 = 𝐾𝐾𝑃𝑃 × 𝑅𝑅𝑠𝑠 × 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑
1
2�  

𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑃𝑃𝑚𝑚𝑠𝑠𝑚𝑚 − 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 

𝐾𝐾𝑃𝑃 = 0.00185 × 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑2 − 0.0433 × 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑 + 0.4023 

Where: 
PET = potential evapotranspiration, mm/day 
Rs = solar radiation, mm/day 
KT = empirical coefficient 
Ra = Extraterrestrial radiation, mm/day 
Tdel = maximum minimum temperature difference, degree Celsius 
Tmax = maximum daily temperature, degree Celsius 
Tmin = minimum daily temperature, degree Celsius 
Tavg = average daily temperature, degree Celsius 

 

 
Figure 2-10: (a) Relative change in estimated change in potential evapotranspiration due to change in temperature is shown from 
different methods.  It shows temperature alone can introduce considerable differences in estimation of potential 
evapotranspiration with the selection of method. (b) Estimate percent changes in potential evapotranspiration using different 
methods for RCP 8.5 for the late 21st century are shown (adapted from Milly 2016). 

Both the Hamon and Hargreaves-Samani PET methods were evaluated for estimating change in potential 
evapotranspiration (PET).  The average annual changes in PET over the watershed for the years 2025 and 
2050 using the two methods are shown in Figure 2-11. The ensemble median of the change for the 
potential evapotranspiration data for short reference cover from the downscaled datasets are also shown, 
which is based on the Penman-Monteith equation.  Short reference is defined as a hypothetical reference 
vegetative cover with an assumed height of 0.12 m, a fixed surface resistance of 70 s/m and an albedo of 
0.23.  Due to the similarities between estimated changes produced by the Hargreaves-Samani and 
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Penman-Monteith methods, along with guidance provided by CBP STAC, and the recommendation of the 
Modeling Workgroup, Hargreaves-Samani was used for the CBP climate simulations.  It is noted that 
estimated change using Hargreaves-Samani method falls between the estimated changes for open water 
and short reference. 

 
Figure 2-11: The relative difference in PET produced by using either the Hamon or Hargreaves-Samani methods are shown here.  In 
2025 projections produced by the WSM, the Hamon method simulated an increase in PET that was 3.36 percent greater than that 
simulated with the Hargreaves-Samani method.  The change was more pronounced in 2050 simulations where the Hamon method 
outpaced the PET rate of Hargreaves-Samani by 6.26 percent. 

 

2.2 Climate Scenario Input Summary 

2.2.1 2025, 2035, 2045, and 2055 Temperature 

Temperature change projections for 2025, 2035, 2045, and 2055 were obtained from an 
ensemble of statistically downscaled GCMs and were incorporated using the delta method 
(Section 2.1.6).  For each model land segment, the average monthly change in temperature (in 
degree Celsius) was calculated for the GCMs, and the median change for each month was used as 
the central tendency of the projected future.  Estimates for the 10th and 90th percentiles were 
also developed to define the range of uncertainty in projected future. As per the 31-member 
ensemble median for the RCP 4.5 scenario, the average annual increase in temperature for the 
Chesapeake Bay watershed in 2025, 2035, 2045, and 2055 were 1.12°C, 1.45°C, 1.84°C, and 
2.12°C respectively. Spatial variability in average annual change for the land segments within the 
Chesapeake Bay watershed is shown in Figure 2-12.  An elevation gradient in temperature 
increase is apparent for all scenarios, i.e. increases in air temperature are relatively lower at 
lower elevations. Figure 2-13 shows the ranges for monthly change in temperature averaged over 
the watershed from 31 GCMs for the RCP 4.5 scenario. The black line in the figure shows the 
spatial aggregation of the land segment ensemble median (P50) of monthly temperature changes. 
It shows a gradual increase in air temperature between 2025 to 2055 from 1.12°C to 2.12°C, 
where the increase in air temperature is almost the same across all months. 
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Figure 2-12: Estimated average annual change in temperature (°C) for the land segments (counties) in the Chesapeake Bay 
watershed are shown for 2025 (top-left) 2035 (top-right), 2045 (bottom-left) and 2055 (bottom-right). The change in temperature 
with respect to 1995 are based upon 31-member ensemble median of downscaled Global Climate Models for RCP 4.5 scenario. 
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Figure 2-13: Monthly change in temperature for the Chesapeake Bay watershed is shown.  Box plots show the projected monthly 
change based on 31-member ensemble of downscaled Global Climate Models for RCP 4.5 for the years 2025, 2035, 2045 and 2055.  
Additional three markers show 10th percentile (P10), ensemble median (P50), and 90th percentile (P90) range for the spatially 
aggregated land segment data. The black line is spatial aggregation of the ensemble median (P50) of the RCP 4.5 GCMs for the 
land segments. 
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2.2.2 2025, 2035, 2045, and 2055 Precipitation 

Precipitation change projections for 2025, 2035, 2045, and 2055 were developed using long-term 
rainfall trends and the ensemble of statistically downscaled GCMs and incorporated using the 
delta method (Section 2.1.6).  For each land segment, the average monthly change in 
precipitation was calculated for each GCM, and the median change for each month was used as 
the central tendency of the projected future.  Estimates for the 10th and 90th percentiles were 
also developed to define the range of uncertainty in projected future. The trend and GCM 
projections were reconciled using a hybrid approach, where the weight for trend varied linearly 
from 1 to 0 between 2025 and 2050, and weight for the GCM varied linearly from 0 to 1 between 
2025 and 2050. As a result, rainfall projection for 2025 was entirely based on the extrapolation of 
rainfall trends, 60/40 hybrid of trend and GCMs for 2035, 20/80 hybrid of trend and GCMs for 
2045, entirely based on GCMs for 2055. During the weighted averaging of trend and ensemble 
median of GCMs additional considerations were given to the seasonality. As discussed previously, 
information regarding seasonality was not directly available since rainfall trends were assessed 
using annual data. Therefore, before the trend data were combined with the ensemble median, 
the monthly percent change for trend data were calculated such that percent change in annual 
volume estimated by trend remained unchanged while the seasonal variability as seen in the 
ensemble median data was incorporated. As per these selections, the average annual increases in 
precipitation volume for the Chesapeake Bay watershed in 2025, 2035, 2045, and 2055 were 
3.11%, 4.21%, 5.34%, and 6.91% respectively. Spatial variability in average annual change for the 
land segments within the Chesapeake Bay watershed is shown in Figure 2-15. Although the 
increase in rainfall gradually increases between 2025 and 2055 the spatial variability in rainfall do 
not show a consistent pattern. Figure 2-14 show an incremental increase in rainfall volume across 
all months between 2025 and 2055. Also, a relatively greater percent increase in rainfall during 
winter months (December to March) is evident as compared to July to September. Nonetheless, 
the representative scenario that is shown using the black line has an increase in rainfall volume 
for all months. The range or variability in monthly projections for rainfall change between the 
GCMs is considerably higher (Figure 2-14) as compared to variability seen for the changes in air 
temperature (Figure 2-13). 
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Figure 2-14: Monthly change in precipitation volume for the Chesapeake Bay watershed is shown.  Box plots show the projected 
monthly change based on 31-member ensemble of downscaled Global Climate Models for RCP 4.5 for the years 2025, 2035, 2045 
and 2055.  Additional three markers show 10th percentile (P10), ensemble median (P50), and the 90th percentile (P90) range for the 
spatially aggregated land segment data. The black lines show the monthly change after the estimated change from trend and 
GCMs were reconciled. 
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Figure 2-15: Estimated average annual change in precipitation volume (as percent change) for the land segments (counties) in the 
Chesapeake Bay watershed are shown for 2025 (top-left), 2035 (top-right), 2045 (bottom-left) and 2055 (bottom-right). The 
change in rainfall volume with respect to 1995 are based on a specified combination of extrapolation of long-term trends and 31-
member ensemble median of downscaled Global Climate Models for RCP 4.5 scenario. 

 

2.2.3 2025, 2035, 2045, and 2055 Potential Evapotranspiration (PET) 

Estimates for PET changes for 2025, 2035, 2045, and 2055, as discussed in Section 2.1.8, were 
developed using the Hargreaves Samani method and the temperature change from statistically 
downscaled GCMs (Section 2.1.6) that were incorporated using the delta method with the NLDAS 
temperature.  Daily factor change in PET was calculated using Hargreaves Samani method and 
applied to the hourly calibration PET data.  For each model land segment, the monthly median 
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change in temperature was used as the central tendency of the projected future in the estimation 
of PET.  Estimates for the 10th and 90th percentiles were also developed to define the uncertainty 
in projected future.  As per the 31-member ensemble median for the RCP 4.5 scenario, the 
average annual increase in PET for the Chesapeake Bay watershed in 2025, 2035, 2045, and 2055 
were 3.36%, 4.43%, 5.54%, and 6.35%, respectively. Spatial variability in average annual change 
for the land segments within the Chesapeake Bay watershed is shown in Figure 2-18.  An 
elevation gradient in estimated changes in PET is seen across the watershed same as for the 
changes in air temperature.  Figure 2-16 and Figure 2-17 show monthly changes in PET using 
Penman Monteith method from Variable Infiltration Capacity (VIC) hydrologic simulations using 
31-member ensemble of downscaled GCMs for RCP 4.5 for the years 2025, 2035, 2045 and 2055.  
The changes in PET corresponding to the ensemble median temperature estimated using 
Hargreaves Samani method. 
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Figure 2-16: Monthly change in potential evapotranspiration for the Chesapeake Bay watershed is shown.  Box plots show the 
estimated monthly change using Penman Monteith method from VIC hydrologic simulation using 31-member ensemble of 
downscaled Global Climate Models for RCP 4.5 for the years 2025, 2035, 2045 and 2055.  Additional three markers show 10th 
percentile (P10), ensemble median (P50), and 90th percentile (P90) range for the spatially aggregated land segment data. The black 
lines show the changes in PET estimated using the Hargreaves Samani method using the ensemble median (P50) temperature 
change. 
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Figure 2-17: Monthly change in potential evapotranspiration for the Chesapeake Bay watershed is shown.  The data are the same 
as in Figure 2-16 except the vertical axis is in inches rather than percent.  Large percent differences during winter months are small 
absolute differences. 
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Figure 2-18: Estimated average annual change in potential evapotranspiration (as percent change) for the land segments 
(counties) in the Chesapeake Bay watershed are shown for 2025 (top-left), 2035 (top-right), 2045 (bottom-left) and 2055 (bottom-
right). The change in potential evapotranspiration with respect to 1995 are based on a Hargreaves-Samani Method and 31-
member ensemble median temperature change of downscaled Global Climate Models for RCP 4.5 scenario. 
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3 Nutrient Inputs Response to Climate Change 

3.1 Atmospheric Deposition 

Multiple data sources of the Chesapeake Bay watershed atmospheric nitrogen (N deposition) as 
well as analysis methods were used for investigating if and how atmospheric N deposition loads 
varied with changes in rainfall. Simple linear regressions were used for developing relationships 
(sensitives) that could be then applied for adjusting existing 1991-2000 atmospheric N deposition 
data to account for the effects of rainfall volume changes in climate change scenarios. 

Atmospheric deposition is among the largest nitrogen inputs to the Chesapeake Bay watershed. 
The Community Multiscale Air Quality (CMAQ) model, which is the airshed model for Phase 6 
Chesapeake Bay Program (CBP) modeling, and the National Atmospheric Deposition Program / 
National Trend Network (NADP/NTN) are some of the best available datasets for atmospheric N 
deposition. The Phase 6 estimations of atmospheric N deposition is a combination of a statistical 
regression model of wet N deposition (Grimm and Lynch 2000; 2005; Grimm 2016) and a 
continental-scale CMAQ Model application for estimates of dry N deposition (Bash et al., 2013). 
The daily precipitation nitrate and ammonium concentration models were developed using a 
linear least-square regression approach and single-event precipitation chemistry data from 85 
NADP/NTN sites and Pennsylvania Atmospheric Deposition Monitoring (PADM) stations. The most 
significant variables in both models included precipitation volume, the number of days since the 
last event, seasonality, latitude, and the proportion of land within 8-km covered by forest or 
transportation and industry. 

CMAQ data show an overall decreasing trend in total nitrogen deposition to the Chesapeake Bay 
Watershed (Figure 3-1). The proportion of dry and wet deposition of nitrate has decreased, 
whereas the proportion of dry and wet deposition of ammonium has increased. In Figure 3-1, the 
estimated total nitrogen deposition for 2002-2012 is based on CMAQ simulation using historical 
meteorology and emissions data. The current federal and state regulations are reflected in the 
projected regional emission in the CMAQ simulations and in the estimated N deposition for 2017, 
2023, and 2028. 

Campbell et al. (2019) evaluated the relative impacts of emission and climate changes on 
atmospheric nitrogen deposition for a recent historical period and a future period centered 
around 2050. Based on these historical and future simulations, they found that the climate 
influence on atmospheric nitrogen deposition was much smaller than the reductions due to 
emissions reductions. With the widespread decreases in anthropogenic nitrogen oxide and sulfur 
oxide emissions from combustion sources (de Gouw et al. 2014), and relatively constant ammonia 
emissions from agricultural and livestock sources (Li et al. 2016), the total average annual 
nitrogen deposition is estimated to decrease by 21% for the year 2050 as compared to that in 
2011, where the oxidized nitrogen deposition decreased by 44% and reduced nitrogen deposition 
increased by 10% in the Chesapeake Bay watershed. 
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Figure 3-1: CMAQ estimated atmospheric N deposition and composition of wet and dry oxidized (OxN) and reduced (NHx) 
components. 2002-2011 is the historical CMAQ simulation, whereas estimates for 2017, 2023, and 2030 are based on “on the 
books” emission projections without considering any changes in climate. Blue dots show estimated total N deposition based on 
CESM dynamically downscaled meteorological data (adapted from Campbell et al., 2019). 

Although the degree of change between the three climate conditions around 2050 were small, 
the CMAQ simulation results showed relatively lower N deposition for the dry condition (year) as 
compared to average (year), and more N deposition for the wet condition, suggesting changes in 
N deposition with climate and the degree of change in rainfall volume. 

Encouraged by this CMAQ model response, detailed analyses of multiple data sources were 
performed to estimate the sensitivity of different atmospheric N deposition components with 
rainfall. 

3.1.1 CMAQ – 2050 climate scenarios 

Campbell et al. (2019) used climate projections from the Community Earth System Model (CESM) 
under the Representative Concentration Pathway 4.5 (RCP 4.5) scenario for simulating the 
atmospheric deposition under future climate with CMAQ. The climate projections where 
dynamically downscaled using the Weather Research Forecasting (WRF) Model. A linked system 
of WRF-CMAQ was used that features improved modeling of dry deposition. The emissions for 
the 2050 future scenario were based on federal and state regulations and measures for the year 
2040 reference case (2040ref), which represent the impact of current “on-the-books” regulations 
without implementation of the heavy-duty vehicle greenhouse gas Phase 2 rule (EPA 2016c). The 
WRF-CMAQ model also featured a linkage with Environmental Policy Integrated Climate (EPIC) 
model for improved simulated changes to N deposition due to agricultural cropping management 
and soil biogeochemical processes. Estimated 2050 loads for the Chesapeake Bay watershed 
show a continued increase in the proportion of reduced N deposition driven by increases in 
ammonia emissions with temperature increase as well as decrease in oxidized nitrogen and sulfur 
dioxide emissions that lead to decreases in atmospheric aerosol causing faster deposition 
velocities for reduced ammonia. This change in reduced nitrogen deposition is due to the higher 
deposition rate for gaseous ammonia, which increased due to a lower atmospheric concertation 
of aerosols relative to particulate ammonium. 



 
41 

CMAQ 2050 simulations provide monthly estimates of N deposition loads and CESM rainfall for 
three years characterizing responses for average/moderate (2048), high/wet (2049), and low/dry 
(2050) climatic conditions (Figure 3-1). The monthly N deposition loads includes components of 
both wet and dry deposition for oxidized and reduced nitrogen forms. 

Percent change were computed for N deposition and rainfall for the wet (2049) and the dry 
(2050) annual data with respect to that for the moderate (2048) year. The percent change in wet 
and dry deposition for nitrate and ammonium were plotting against percent change rainfall for all 
235 counties in the Chesapeake Bay watershed as shown in Figure 3-2. Black lines connecting the 
wet and dry responses for different counties show a similar linear slope for both wet nitrate and 
wet ammonium deposition with rainfall. However, dry nitrate and dry ammonium deposition 
remained almost constant and did not show any sensitivity to changes in rainfall, suggesting 
climate alone did not have much of an impact on dry deposition. 

 
Figure 3-2: Percent change in N deposition with percent change in rainfall – (a) wet nitrate, (b) dry nitrate, (c) wet ammonium, and 
(d) dry ammonium. Pair of blue and red dots show percent change for a county in N deposition and rainfall for the high (2049) in 
blue and low (2050) in red annual data with respect to that for the average (2048) year. Black line  

Although slope for changes in wet deposition with rainfall varied somewhat between counties but 
it did not show any specific spatial pattern across the watershed (Figure 3-3), suggesting that for 
most part the amount of change in wet deposition was similar throughout the watershed and 
primarily a function of changes in rainfall volume. The differences in the slope seen between the 
counties could be due to interaction of several factors including differences in precipitation 
intensity and seasonality, wind and storm patterns, distance from the emission sources (primarily 
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ammonia, sulfur oxide, and nitrate), scavenging and its impact on downwind availability of 
nutrients in the atmosphere. 

 

 
Figure 3-3: Percent change in wet N deposition with percent change in rainfall volume for the land segments . Although the slope 
varied with land segments it did not show any specific spatial pattern.  

Boxplots in the Figure 3-4 show the distribution of slopes between 235 Chesapeake Bay 
watershed counties for the wet nitrate and ammonium deposition. Higher rates of wet deposition 
require the colocation of high atmospheric concentration from high emissions and high 
precipitation events. The differences in the slopes are likely due to differences in the seasonality 
and intensity of the projected precipitation changes and the spatial and temporal distribution of 
emission sources in the watershed counties. The median slope for the percent change in wet 
nitrate and wet ammonium with percent change in rainfall volume were 0.901 and 1.096, 
respectively. 
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Figure 3-4: Percent change in wet nitrate and wet ammonium with changes in rainfall volume. Box plots show distribution of slopes 
for 235 counties in the Chesapeake Bay watershed. Median slopes were 0.901 and 1.096 for wet nitrate and wet ammonium 
respectively. 

3.1.2 Phase 6 Chesapeake Bay Program Airshed Model 

Wet atmospheric deposition data estimates from Phase 6 Chesapeake Bay Program airshed 
model were analyzed in two phases. As shown in Figure 3-5, Phase 6 atmospheric deposition data 
were available in two different forms – (a) an N deposition time series that included interannual 
variability in deposition due to both climate as well as emissions – i.e. non-detrended data, and 
(b) an N deposition time series where annual trends due to emissions were removed and 
therefore included the variability due climate alone – i.e. detrended data. These two Phase 6 data 
products are used in the Chesapeake Bay Program modeling for different purposes.  

In the first phase, similar to the 2050 CMAQ data analysis, both non-detrended and detrended 
Phase 6 data were analyzed in pairs of 3 consecutive annual data points. Consecutive years were 
selected to minimize any differences in non-detrended data due to changes in emissions. Four 
different periods were selected where the differences in annual rainfall were sufficient and 
appropriate enough to categorize them as average (moderate), high (wet), and low (dry) years.  
Median slopes for wet nitrate and ammonium for these periods have shown in Table 3-1.  All four 
periods showed a positive relationship for wet nitrate and wet ammonium with changes in 
rainfall.  Although median slopes in Table 3-1 for both non-detrended and detrended data are 
similar to ones obtained earlier from the 2050 CMAQ data but it indicated that the median slope 
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varied with the selection of period, potentially due to drivers such as wind and atmospheric 
chemistry among others. 

 
Figure 3-5: Phase 6 Chesapeake Bay Program Airshed Model estimates of wet deposition of nitrate and ammonium to the 
Chesapeake Bay watershed. Data shown with solid lines include interannual variability due to both climate and emissions, whereas 
the influence of emissions trends were removed in the ones shown with dotted lines. 

Table 3-1: Median slopes for wet nitrate and wet ammonium deposition for the 235 counties in the Chesapeake Bay watershed.  

Dry-Avg-Wet Years 
Non-detrended Detrended 

Nitrate Ammonium Nitrate Ammonium 

1988-1987-1989 0.946 2.070 0.977 2.005 

1995-1993-1994 0.854 0.748 0.781 0.763 

2001-2002-2003 0.341 0.559 0.442 0.569 

2010-2009-2011 1.322 2.547 1.773 2.580 

Average 0.866 1.481 0.993 1.479 
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In the second phase, analysis was conducted using the detrended Phase 6 atmospheric deposition 
data for a longer 10-year period. As mentioned earlier the effect of changes in emissions were 
removed in detrended data therefore the variability in interannual loads were primarily due to 
annual rainfall. Furthermore, it was presumed that the longer period will overcome some of the 
limitations and anomalies in the previous analyses based on data for just 3 years. Percent change 
in 1991 to 2000 annual wet nitrate and ammonium data for the land segments (counties) with 
respect to average annual data are shown in Figure 3-6. Linear regression lines for every county 
based on 10 annual data points are also shown. Similar to the CMAQ data regression analysis 
described earlier, the detrended Phase 6 data showed some degree of variability in slopes 
between counties, with median slopes of 0.770 and 0.837 for wet nitrate and ammonium, 
respectively. It is noted that these median slopes are smaller as compared to that obtained from 
the CMAQ 2050 data.  The longer-term second phase results were used in the final 
recommendation in Section 3.1.5 rather than the shorter-term results as more comprehensive 
and robust findings. 

 
Figure 3-6: Percent change in wet nitrate and wet ammonium with changes in rainfall volume for 235 counties in the Chesapeake 
Bay watershed based on Phase 6 annual detrended data for 1991-2000. Median slopes of 0.770 and 0.837 for wet nitrate and wet 
ammonium respectively were smaller than that from CMAQ 2050 data. 

3.1.3 NADP wet deposition estimates 

National Atmospheric Deposition Program (NADP) is a network of monitoring stations across that 
United States where long term precipitation chemistry data is collected. The program provides 
one of the best available sources of observation-based data for amount, trends, and geographic 
variability in precipitation chemistry data (acids, base cations, and nutrients). 

Time series data for rainfall and precipitation chemistry data for a total of 322 NADP/NTN stations 
were obtained (http://nadp.slh.wisc.edu/data/ntn/). Wet nitrate and wet ammonium data for a 
total of 25 NADP monitoring stations in the Chesapeake Bay watershed, and 70 NADP monitoring 
stations in the Chesapeake Bay airshed were analyzed (Figure 3-7). 

 

http://nadp.slh.wisc.edu/data/ntn/
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Figure 3-7: NADP monitoring stations in the Chesapeake Bay watershed and Chesapeake Bay airshed that were analyzed. 

Available rainfall, wet nitrate, and wet ammonium data were pre-processed and aggregated at 
annual time step for the analysis. Annual data for the station with respect to station specific long-
term average have been shown in the Figure 3-8 and Figure 3-9 for the 25 monitoring stations in 
the Chesapeake Bay watershed and 79 stations in the airshed, respectively. The median slopes 
obtained based on the stations in watershed and in airshed were almost the same (Figure 3-8 and 
Figure 3-9). 
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Figure 3-8: Percent change in wet nitrate and wet ammonium with changes in rainfall volume based on 25 NADP monitoring 
stations in the Chesapeake Bay Watershed. A specific color represents one of the 25 monitoring stations, where dots of same color 
show annual data points. 

 

 
Figure 3-9: Percent change in wet nitrate and wet ammonium with changes in rainfall volume based on 79 NADP monitoring 
stations in the Chesapeake Bay Airshed. A specific color represents one of the 79 monitoring stations, where dots of same color 
show annual data points. 

3.1.4 Organic nitrogen 

Phase 6 airshed model uses 0.080 mg/l for spring (April, May, and June), and 0.040 mg/l for non-
spring months as the organic nitrogen concentrations in the precipitation. The organic nitrogen is 
only deposited to the water bodies in the watershed. Due to the lack of any additional 
information, the same concentrations are used for the climate change scenarios, which would 
result in a proportional increase in loads from the water load sources with increase in rainfall 
volume and vice versa. 

3.1.5 Summary and synthesis 

Multiple data sources of atmospheric N deposition were analyzed from a physically-based CMAQ 
2050 climate simulation, a statistical model-based Phase 6 data set, and observation-based 
estimates for NADP monitoring stations. Wet deposition of nitrate and ammonium showed a 
positive linear relationship with rainfall and dry deposition did not show much sensitivity to 
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rainfall. The slope of a linear regression between percent change in wet deposition and percent 
change in rainfall volume showed some variability between land segments (counties) but a clear 
spatial pattern was not found. 

Table 3-2: Median sensitivity slopes for percent change in wet nitrate and wet ammonium with percent change in rainfall volume 
from multiple data sources including physics based model, statistical model, and observations. 

Data Source Wet Nitrate Wet Ammonium 

CMAQ 2050 Simulation 0.901 1.096 

Phase 6 CBP Airshed Model 0.770 0.837 

NADP Wet deposition – Chesapeake watershed 0.759 0.960 

NADP Wet deposition – Chesapeake airshed 0.756 0.992 

Rounded Average 0.8 1.0 

 

The median sensitivity slopes from the analyses are summarized in Table 3-2. The median slope of 
wet ammonium was higher than the median slope of wet nitrate (Table 3-2). Some plausible 
drivers for this behavior could be (a) differences in the seasonality of nitrate and ammonium, 
where ammonium wet deposition peaks in the spring while nitrate wet deposition peaks in Mid-
Summer; (b) feedbacks between cropping system ammonia and nitrate emissions and 
precipitation, though these are small as compared to other sectors, e.g., animal and mobile 
sources.  

By suggestion of the Modeling Workgroup, the rounded average of the median slopes obtained 
from the analyses of different data sources was adopted as the sensitivity of wet deposition and 
used for adjusting wet deposition to the watershed and estuarine open waters with changes in 
rainfall volume (Table 3-2). The sensitivity (i.e. percent change in wet deposition with percent 
change in rainfall volume) of less than 1, 0.8 for wet nitrate deposition, suggests an overall 
decrease in concentration with increase in rainfall volume and vice versa. This is expected due to 
the scrubbing of the atmosphere from precipitation events, e.g. a wetter year will remove more 
nitrate mass from the atmosphere than a dry year, and the emissions are relatively constant year 
to year for the largest emission sectors. 

3.2 Land Use 

Climate and land use are linked in complex ways – land use choices have effects on the release of 
greenhouse gasses, climate trends can affect human choices about land cover and land use, and 
both can be driven by the same societal choices.   

Climate change may result in a change in the frequency and severity of droughts, heat waves, 
tropical storms and other weather hazards which may affect the patterns of development.  
Additionally, agriculture will react by planting a different combination of crops more suited to the 
future weather patterns. (Grimm, et al 2013, Brown, et al 2014, Kutta and Hubbart, 2019) 
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Climate and land use are both changing through time; however, they are not the primary drivers 
of each other at the scale of the Chesapeake watershed.  Land use changes in the watershed 
would have a small effect on the global carbon budget and the primary drivers of land use change 
within the Chesapeake are based on the local economy, regulation, conservation, and other 
factors that are not primarily driven by climate change.   

Although the climate effect on land use change is likely small, the effect is already subsumed 
within the land use data set that has been developed by the CBP land data team detailed in 
Section 5 of the CAST documentation (CBP 2017).  The land use data set is provided from 1985 
through 2017 and projected through 2025 using trends and population projections that are based 
on observations occurring during a period of climate change, and therefore climate-induced 
changes in land use are already included in the data set.  Climate effects are not separable from 
land use changes from other drivers, however.  Land use projections will be provided through 
2050.  Climate effects will be included in these estimates to the extent that they are a 
continuation of current trends in land use. 

3.3 Agricultural Inputs 

Agricultural practices are highly dependent on expected weather and therefore will change in 
response to climate trends.  Alterations in production due to climate have already occurred and 
have been estimated in the literature (e.g. Gammas et al, 2017).  The National Climate 
Assessments (Hatfield et al, 2014, Gowda, et al, 2018) found that increased climate stressors such 
as droughts, extreme precipitation, and extreme temperatures will likely have negative effects on 
production systems.  Other studies have found beneficial effects of increased carbon dioxide 
concentrations (e.g. Deryng et al, 2016).  Meanwhile adaptations in cropping methods and 
technologies tend toward increasing agricultural yields in the Chesapeake region.   

The CBP uses data from the census of agriculture (e.g. USDA-NASS 2014) and other sources (CBP 
2017, Section 3) to estimate changes in production systems, animal populations, and yields 
through years of interest.  The 2017 census of agriculture will be projected through 2022 and held 
constant for future years according to methods approved by the CBP partnership (CBP 2017, 
Section 3).   The observed changes to agriculture in the census include changes due to climate, 
although the CBP does not break out agricultural change due to climate specifically.  Currently, no 
method has been identified to include climate influences in land use or agricultural projections to 
2035, 2045, and 2055.  In their July 16, 2019 meeting, The Modeling Workgroup encouraged 
further work by the partnership for 2035, 2045, and 2055. 

3.4 Direct Loads 

3.4.1 Combined Sewer Overflows 

Changes in Combined Sewer Overflow (CSO) volumes expected because of climate change were 
obtained by first estimating the expected changes in rainfall volume and intensity under a set of 
climate change scenarios and then using an empirical regression between rainfall and daily CSO 
volume.  This regression was developed by Tetra Tech and previously used to estimate CSO inputs 
for the Phase 6 Watershed Model (see Section 8 of the Phase 6 CAST and Watershed Model 
documentation, Chesapeake Bay Program 2017). 
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Projected changes in average monthly volumes of rainfall for different climate change scenarios 
(2025, 2035, 2045 and 2055) were obtained through a combination of observed long-term 
historical trends in local rainfall and results from climate models as described in detail in Section 
2.1.  For each climate change scenario, the overall change in rainfall volume projected in each 
month was distributed across the historical (1991–2000) daily precipitation events exceeding 0.01 
inches occurring in that month.  As described in more detail in Section 2.1, the projected change 
in rainfall volume was not distributed uniformly across all daily precipitation events. Instead, the 
set of precipitation events > 0.01 inches occurring in each month was divided into deciles, and 
precipitation events falling into the highest deciles were assigned a larger fraction of the overall 
rainfall change projected for that month.  For example, if a climate change scenario predicted a 
3% increase in rainfall volume for the month of March and the observed rainfall volume for 
March in 1991-2000 was 7 inches, then 7 inches x 3% = 0.21 inches of total rainfall volume should 
be added to March rainfall.  This added volume is distributed unevenly across rainfall deciles, with 
events falling in the highest decile of the distribution for March precipitation events receiving 
around 65% of 0.21 inches, events falling in the second highest decile receiving around 10% of 
0.21 inches and events falling in smaller deciles receiving the remaining amount of volume.  This 
approach was designed to account for the fact that previous literature has shown uneven 
increases in precipitation events in this area, with larger rainfall events increasing more compared 
to smaller ones (Groisman et al. 2004). As described in Section 2.1, climate-driven changes in 
monthly rainfall volumes vary geographically, and as a result, CSO service areas received 
somewhat different projected rainfall changes depending on their location in the watershed.  

After generating new time series (1991–2000) of daily precipitation events for each CSO service 
area and for each climate change scenario, an empirical regression between CSO volume and 
rainfall previously developed by Tetra Tech (Figure 8-5 in Section 8 of the Phase 6 CAST and 
Watershed Model documentation, Chesapeake Bay Program 2017) was applied to obtain 
projected CSO volumes under each climate change scenario. For four CSO communities, historical 
CSO volumes in 1991-2000 were not originally estimated using the Tetra Tech regression because 
those facilities submitted their own volume data. For these communities, site-specific empirical 
regressions were developed that captured the relationship between CSO volume and rainfall 
(Figure 3-10), and these site-specific regressions were used instead of the Tetra Tech regression 
to estimate predicted CSO volumes under climate change scenarios.  The four communities for 
which this approach was used were Washington DC (DC0021199), Lynchburg, VA (VA0024970), 
Richmond, VA (VA0063177) and Alexandria, VA (VA0087068). 
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Figure 3-10 Relationship between daily CSO volume per unit area and rainfall at four communities that provided CSO volume data 

over the period 1991-2000. DC0021199: Washington, DC; VA0024970: Lynchburg, VA; VA0063177: Richmond, VA; VA0087068: 
Alexandria, VA 

 

Loads of constituents were calculated by multiplying CSO volumes by event mean concentrations 
(EMC) derived from observations or literature as described in Section 8.5 of the Phase 6 CAST and 
Watershed Model documentation. Note that because constituent loads are estimated by 
multiplying CSO volumes by fixed EMC values, for each service area percent changes of 
constituent loads are identical to percent changes of CSO volumes. 

With respect to the 1991-2000 reference period, the estimated average annual percent change in 
precipitation volume across all CSO service areas was 2.91% under 2025 conditions (estimated 
through extrapolation of long-term trends), and 4.09, 5.02 and 6.24% under 2035, 2045 and 2055 
conditions, respectively (estimated from an ensemble of GCMs). 

The corresponding estimated percent changes in average annual CSO volume are reported in 
Figure 3-11. Figure 3-12 shows time series of total annual CSO volumes estimated for the period 
1991-2000 and used for model calibration, together with the corresponding annual values 
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projected under different climate change scenarios. Finally, Table 3-3 and Table 3-4 summarize 
estimated CSO-derived TN and TP loads under different climate change scenarios broken down by 
state. 

 
Figure 3-11 Estimated percent change in total CSO volume under different climate change scenarios. Reference period: 1991 – 2000 

 
Figure 3-12 Time series of total annual CSO volume across all 64 communities in the Chesapeake Bay watershed. The darkest green 

line corresponds to CSO volumes used during model calibration, while other lines illustrate the estimated CSO volumes under 
different climate change projection years 
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Table 3-3 Mean annual TN loads (Lbs/yr) from CSOs estimated for the historical period 1991-2000 and a set of climate change 
scenarios 

State # Facilities 1991 – 2000 2025 2035 2045 2055 
DC 1 87,414 92,182 93,453 94,890 97,651 
DE 1 2,318 2,348 2,350 2,375 2,411 
MD 10 31,072 31,675 31,828 32,035 32,465 
NY 3 212,015 216,215 217,159 217,419 217,976 
PA 40 1,629,861 1,657,892 1,664,987 1,671,681 1,682,526 
VA 4 307,901 317,311 322,045 329,372 335,453 
WV 5 62,752 63,879 64,317 64,888 65,570 

 

Table 3-4 Mean annual TP loads (Lbs/yr) from CSOs estimated for the historical period 1991-2000 and a set of climate change 
scenarios 

State # Facilities 1991 – 2000 2025 2035 2045 2055 
DC 1 18,599 19,613 19,884 20,189 20,777 
DE 1 290 293 294 297 301 
MD 10 3,609 3,680 3,698 3,722 3,772 
NY 3 26,502 27,027 27,145 27,177 27,247 
PA 40 257,694 261,753 262,907 264,028 265,594 
VA 4 38,532 39,711 40,303 41,220 41,982 
WV 5 7,844 7,985 8,040 8,111 8,196 

It can be shown from the data in Table 3-3 and Table 3-4 that DC and VA have a higher sensitivity 
to climate based on this calculation.  It should be noted that the estimates from DC and VA are 
based on much better data than other jurisdictions and it should not be interpreted to mean that 
climate change effects are worse in DC and VA.  The estimates from other jurisdictions would 
likely benefit from better data collection. 

3.4.2 Other direct loads 

Wastewater treatment plants (WWTPs) may experience operational changes due to climate 
change.  Changes in water use and supply may have an effect on the influent concentrations 
expected.  Increases in influent temperature lead to increased reaction rates associated with 
biological nutrient removal.  However, operators of plants are largely able to control effluent 
concentrations by altering their processes to meet permit limits.  Given the existing permit limits 
that are expressed in the WIPs, it is unlikely that climate change will have an effect on the 
effluent of WWTPs in the Chesapeake.  Moreover, any changes in wastewater loads due to 
climate change are already factored into the data supplied to the CBP from 1985 through 2017.  
Similarly, data for septic systems, rapid infiltration basins, and diversions are inclusive of the 
period 1985 through the mid-2010s, capturing most of the effects of climate change through 
2025.  No method has been determined to project climate effects on these systems through 
2050. 
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4 Watershed Model Response to Climate Change 

Section 2 discussed the calculation of precipitation, 
temperature, and carbon dioxide changes between 
the Chesapeake TMDL averaging period of 1991-
2000 and future climate scenarios centered around 
2025 and 2050.  Section 3 discussed changes in 
nutrient inputs and land use changes.  This section 
discusses simulated watershed responses to the 
climate-modified inputs.  Watershed responses are 
represented in Figure 4-1 as sensitivities, BMPs, 
and the three watershed delivery factors – Land to 
Water, Stream Delivery, and River Delivery. 

4.1 Simulation of CO2 Concentration Response 

The HSPF model structure does not provide a direct 
mechanism for simulating the impact of CO2 on 
water budget through stomatal resistance and 
decreased plant evapotranspiration.  However, 
Butcher et al. (2014) documents necessary 
adjustments to HSPF LZETP parameter that can 
be used for the simulation of CO2 effects on plant stomatal resistance in HSPF and subsequently 
on the lower vadose zone evapotranspiration.  Accordingly, the monthly LZETP parameter was 
modified to simulate the effect of increasing CO2 concentrations as a result of continuing 
projections of atmospheric contributions from anthropogenic sources.   

PETfactor = AET1 / AET0 

Where, 

PETfactor = ratio of actual ET (AET) under new CO2 level and reference 

 

For HSPF: 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐻𝐻𝑃𝑃𝑡𝑡𝐻𝐻𝑜𝑜 =  1/(1−𝐿𝐿𝐿𝐿𝐿𝐿𝑇𝑇𝐿𝐿1)
1/(1−𝐿𝐿𝐿𝐿𝐿𝐿𝑇𝑇𝐿𝐿𝑜𝑜)

 

LZETP1 = Max { 1 – ( 1 – LZETP0 ) / PETfactor, 0.01 } 

Equation 4-1 

Where, 

LZETP = HSPF lower zone ET parameter 

 

For Penman Monteith: 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐻𝐻𝑃𝑃𝑡𝑡𝐻𝐻𝑜𝑜 =  1/{∆+𝛾𝛾(1+𝑟𝑟𝑠𝑠1/𝑟𝑟𝑎𝑎)}
1/{∆+𝛾𝛾(1+𝑟𝑟𝑠𝑠0/𝑟𝑟𝑎𝑎)} 

Figure 4-1: Phase 6 model structure 
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𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐻𝐻𝑃𝑃𝑡𝑡𝐻𝐻𝑜𝑜 =  
(∆ + 𝛾𝛾)𝑜𝑜𝑠𝑠 + 𝛾𝛾𝑜𝑜𝑠𝑠0
(∆ + 𝛾𝛾)𝑜𝑜𝑠𝑠 + 𝛾𝛾𝑜𝑜𝑠𝑠1

 

∆=
4098 × �0.6108 𝑒𝑒𝑒𝑒𝑒𝑒 � 17.27𝑃𝑃

𝑃𝑃 + 273.3��
(𝑃𝑃 + 273.3)2  

𝛾𝛾 = 0.673645 �
293 − 0.0065𝑧𝑧

293
�
5.26

 

T = air temperature (monthly), °C 

z = elevation, meter 

𝑜𝑜𝑠𝑠0 =
𝑜𝑜𝑑𝑑

. 5 𝐿𝐿𝐿𝐿𝐿𝐿
=

100
. 5 × 24 × 0.12

= 70 

𝑜𝑜𝑠𝑠1 =
𝑜𝑜𝑑𝑑

. 5 𝐿𝐿𝐿𝐿𝐿𝐿 �1.4 − 0.4𝐶𝐶𝐶𝐶2330�
=

100

. 5 × 24 × 0.12 �1.4 − 0.4𝐶𝐶𝐶𝐶2330�
=

70

�1.4 − 0.4𝐶𝐶𝐶𝐶2330�
 

𝑜𝑜𝑠𝑠 =
208
𝑜𝑜

 

u = wind velocity (monthly), m/s 

 

4.2 Simulation of Hydrology 

A new set of precipitation, temperature, potential evapotranspiration, and modified LZETP 
parameters are inputs for the climate change scenarios.  The impact of these climate change 
variables on the hydrologic response is simulated by the HSPF PWATER, IWATER, SNOW, and 
HYDR modules for the Phase 6 model.  This approach is same as the one used in Phase 5 climate 
change simulation. 

HSPF hydrologic simulation for climate change respond to changes in (a) rainfall volume and 
rainfall intensity, (b) potential evapotranspiration, (c) CO2 level, and (d) temperature inputs. 
Changes in temperature inputs influence snow hydrology by introducing changes in the amount 
of snow and energy balance for the snowpack.  Changes in potential evapotranspiration and 
adjustments for CO2 level influence the evapotranspiration calculations, subsequently impacting 
the simulated water budget. 

4.3 Simulation of Sediment Loss 

The impact of climate change on the sediment transport is simulated by HSPF SEDMNT, SOLIDS, 
and SEDTRN modules subroutines for the Phase 6 model.  This approach is same as the one used 
in Phase 5 climate change simulation. 

HSPF uses a process-based approach for the production and removal of sediment. The land 
surface erosion of sediment includes processes for detachment by net rainfall, attachment on 
days without rainfall, and removal by surface outflow. 
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As shown in Equation 4-2, the detachment of sediment particles (DET) is simulated due to kinetic 
energy of falling rain (RAIN), which are then available for transport. Changes in rainfall volume 
and intensity due to climate change will therefore directly impact the net sediment transport.  
The CR terms in the Equation 4-2 represent the fraction of land covered include coverage by 
snow.  Therefore, any changes in the snow hydrology will also have direct impact on detachment 
of sediment particles. 

𝐷𝐷𝑃𝑃𝑃𝑃 = (1 − 𝐶𝐶𝑅𝑅) × 𝑆𝑆𝑆𝑆𝑃𝑃𝑆𝑆 × 𝐾𝐾𝑅𝑅𝑃𝑃𝑅𝑅 × (𝑅𝑅𝐿𝐿𝐿𝐿𝑅𝑅)𝐽𝐽𝐽𝐽𝐿𝐿𝐽𝐽 

Equation 4-2 

Where: 
DET =   Detachment of particles 
CR =   fraction covered by vegetation or snow 
SMPF =  management practice factor (set to 1 for CBP purposes) 
KRER =  soil detachment coefficient (complex units) 
RAIN =   Precipitation (inches per hour) 
JRER =   soil detachment exponent (complex units) 
 
As shown in Equation 4-3, the transport (WSSD) of the detached sediment and the scour of soil is 
simulated based on surface outflow (SURO) and surface water storage (SURS). The detached 
sediment storage (DETS) and sediment removal capacity (STCAP) also control the amount of 
sediment transport.  The climate change stressor would impact the surface outflow and surface 
water storage, and therefore the transport of sediment. 

𝑊𝑊𝑆𝑆𝑆𝑆𝐷𝐷 = (𝐷𝐷𝑃𝑃𝑃𝑃𝑆𝑆 𝐻𝐻𝑜𝑜 𝑆𝑆𝑃𝑃𝐶𝐶𝐿𝐿𝑃𝑃) × 𝑆𝑆𝑆𝑆𝑅𝑅𝐶𝐶
(𝑆𝑆𝑆𝑆𝑅𝑅𝑆𝑆 + 𝑆𝑆𝑆𝑆𝑅𝑅𝐶𝐶)�  

Equation 4-3 

Where: 
WSSD =  Sediment Washoff (tons/acre/hour) 
DETS =  Storage of detached sediment (tons/acre) 
STCAP =  Sediment removal capacity 
SURO =  Surface runoff (inches/acre/hour) 
SURS =  Surface water storage 
 
4.4 Nitrogen Loss Sensitivity to Climate Change 

Time-averaged response of nitrogen does not have sensitivity to changes in hydrology and 
sediment in the Phase 6 Watershed Model.  Nitrogen loads for a land use are determined by 
nutrient inputs as discussed in Section 4 and watershed characteristics as discussed in Section 7.  
Nitrogen loads would be affected by climate change and so additional sensitivities to inputs must 
be included. 

4.4.1 Analyses Used in 2017 Climate Assessment 

Using the framework of multiple lines of evidence, the modeling team analyzed percent change in 
nitrogen delivery relative to percent change in flow.  Using the Phase 5.3.2 Watershed Model, this 
ratio was determined to be 0.643 as illustrated in Figure 4-2. In the ’20 watersheds’ study (U.S. 
EPA 2013), HSPF and SWAT were used to simulate the effect of climate change on 20 watersheds 
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across the contiguous U.S (Butcher et al. 2014, U.S. EPA 2013) and Figure 4-3 shows the simulated 
responses .  This analysis simulated changes in flow (Table 7-7 U.S. EPA 2013) and total nitrogen 
delivery (Table 7-14 U.S. EPA 2013) in response to the changes in climatic inputs obtained from a 
set of six downscaled climate model projections.  The findings suggest a ratio of 1.14 for the 
simulated changes in nitrogen load delivery with respect to changes in flow.  For the 
Susquehanna, the only watershed situated in the Chesapeake Bay watershed, the ratio was 7 with 
a 49 percent increase in TN for a 7 percent increase in flow.  However, this ratio was an outlier 
among the 20 watersheds.  Given the wide variability in outcomes a ratio of 1 was selected for 
initial study with additional input being sought for future refinements.  This is equivalent to an 
assumption of no changes in flow-weighted nitrogen concentrations with changes in flow or a 
proportional change in nitrogen load to a change in flow. 

 
Figure 4-2: Simulated responses for flow and nitrogen from the Phase 5.3.2 Chesapeake Bay Watershed Model.  Climate change 
simulations included in the analysis were based on a CMIP3 ensemble of 6 downscaled Global Circulation Models for the years 
2025 and 2050.  Six additional sensitivity simulations for rainfall, temperature and potential evapotranspiration, and carbon 
dioxide were also included. 
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Figure 4-3: The sensitivity of nitrogen load delivery with changes in flow under a wide range of climate change scenarios.  The 
simulated response for 20 watersheds under the climate change scenarios is shown (From U.S.EPA 2013). 

4.4.2 Extended literature review 

An additional, more extensive literature review was carried out in 2019 to validate or revise the 
proportional relationship between changes in streamflow and changes in TN load used in the 
2017 Climate Assessment. A total of 27 studies carried out in 40 watersheds were found that used 
either an empirical or a process-based modeling approach to predict changes in flow and TN load 
under climate change scenarios (Table 4-1). To investigate whether watersheds characterized by 
different dominant land uses tended to exhibit different responses to climate change scenarios, 
the 40 watersheds were divided into three broad categories based on the land use data reported 
in each study: 1) “Agricultural/Developed” watersheds, where >60% of the watershed area was 
characterized as agricultural, pasture and/or developed; 2) “Mixed” watersheds, where neither 
anthropogenic (agricultural, pasture and/or developed) nor more natural (forested) land uses 
occupied >60% of the land; and 3) “Forested” watersheds, where >60% of the watershed area 
was forested (Table 4-1). For each study, average streamflow and either TN or NO3 load 
estimated under climate change conditions were expressed as percent change from their 
corresponding historical baselines. Percent changes in TN load were then regressed against 
percent changes in streamflow separately for the three broad land use categories identified 
above (Figure 4-6 through Figure 4-6). A hierarchical modeling approach was used, where the 
regression slope and intercept were assumed to derive from a common hyperdistribution and 
were allowed to vary across studies.  

All studies conducted in predominantly agricultural or developed watersheds show a remarkable 
level of agreement in indicating an approximately 1:1 relationship between climate change-driven 
changes in flow and corresponding changes in TN load (Figure 4-6). Although studies conducted in 
mixed and forested watersheds appear to slightly deviate from a 1:1 relationship, they are 
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characterized by substantially larger variability when compared to results from 
agricultural/developed sites, and the 95% confidence intervals of the mixed and forested 
regression slopes overlap with the mean slope estimated for the agricultural/developed 
watersheds (Figure 4-6 through Figure 4-6). Due to the larger level of uncertainty associated with 
mixed and forested sites, robust conclusions on whether different land uses may be characterized 
by different TN-flow responses are not warranted based on this dataset, and results from this 
literature review generally indicate support for the adoption of a 1:1 relationship for TN load 
sensitivity to changes in flow. 

Table 4-1 Main characteristics of the studies used to assess the impact of climate change-driven changes in hydrology on N loads. 
The column “Model” provides the modeling tool used either to simulate N loads in the study area or to analyze observed load data. 
The column “Land use gr.” reports the broad land use categories used to divide watersheds into groups with relatively 
homogeneous land use characteristics (1: “Agricultural/Developed”; 2: “Mixed”; 3: “Forested”; see main text for explanation). 

Reference River State/ 
Country 

Area 
(km2) 

Model Land use Land 
use 
gr. 

Alam 2015 Eno NC 364 SWAT 56% forest; 25.5% pasture; 
11% developed; 
2%agricultural; 2% 
grassland; 2% scrub; 2% 
open water 

2 

Alamdari 
et al 2017 

Difficult Run  VA 150 SWMM 57% urban development; 
8% commercial/industrial; 
11% transportation; 24% 
open space 

1 

Arheimer 
et al 2005 

Ronnea Sweden 1900 SOILNDB + 
HBV-N 

46.5% forest; 32.3% 
agricultural; 3.2% urban; 
3% water 

2 

Bosch et al 
2014 

Maumee OH/MI 17030 SWAT 76% crop; 5% hay; 11% 
urban; 8% forest 

1 

Bosch et al 
2014 

Sandusky OH 3455 SWAT 80% crop; 3% hay; 9% 
urban; 8% forest 

1 

Bosch et al 
2014 

Raisin OH/MI 2784 SWAT 53% crop; 19% hay; 11% 
urban; 16% forest 

1 

Bosch et al 
2014 

Grand OH 1896 SWAT 27% crop; 10% hay; 10% 
urban; 52% forest 

2 

El Khoury 
et al 2015 

South Nation Ontario, 
Canada 

3858 SWAT 57.8% agricultural; 41.03% 
forest 

2 

Ficklin et al 
2013 

San Joaquin  CA 14983 SWAT 2/3 agricultural 1 

Ficklin et al 
2013 

Sacramento  CA 23300 SWAT 62% rangeland; 33% 
agricultural; 5% urban, 
waterways and forested 

1 

Hanratty & 
Stefan 
1998 

Cottonwood  MN 3400 SWAT 52% rangeland; 46% crop 1 

Khoi and 
Thang 
2017 

3S  Laos/ 
Cambodia
/Vietnam 

78500 SWAT 78.76% forest; 13.2% 
agricultural; 1.32% urban 

3 
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Lee et al 
2018 

Tuckahoe  MD 220.7 SWAT 54% agricultural; 8.4% 
pasture; 4.2% urban; 32.8% 
forest; 0.6% water 

1 

Lee et al 
2018 

Greensboro  MD/DE 290.1 SWAT 48% forest; 36.1% 
agricultural; 9.3% pasture; 
5.6% urban; 0.7% water 

2 

Me et al 
2018 

Puarenga New 
Zealand 

77 SWAT 47% exotic forest; 26% 
farmland; 11% mixed 
scrub; 9% indigenous forest 

2 

Mehdi et al 
2015a 

Pike  Québec/ 
VT 

629 SWAT 22% hay; 20% corn; 8% 
cereal; 2% soybean; 2% 
orchard; 40% forest; 5% 
water; 1% urban 

2 

Mehdi et al 
2015b 

Altmuhl Germany 980 SWAT 60% agricultural; 30% 
forest; 5% urban 

1 

Nguyen et 
al 2019 

Torrens Australia 200 SWAT 100% urbanized 1 

Park et al 
2011 

Chungju  South 
Korea 

6642 SWAT 82.3% forested; 12.2% 
cultivated 

3 

Riverson et 
al 2013 

Lake Tahoe 
Watershed 

CA/NV 1298 LSPC 65.7% conservation; 22.4% 
recreation; 10.3% 
residential; 1.1% 
commercial; 0.5% tourist 

3 

Ross 2014 Woonasqua 
tucket-
Moshassuck  

RI/MA 192.6 SWAT 38.2% developed; 49.1% 
forest; 4.5% agricultural; 
2% water; 6.2% wetland 

2 

Ross 2014 Ten Mile  RI/MA 143.6 SWAT 40.9 developed; 46.2% 
forest; 4.5% agricultural; 
2% water; 6.3% wetland 

2 

Ross 2014 Taunton RI/MA 1250 SWAT Upper Taunton: 36% 
developed; 50.5% forest; 
1.1% agricultural; 2.9% 
water; 9.5% wetland; Mid 
Taunton: 17.6% developed; 
62.8% forest; 4.7% 
agricultural; 6.3% water; 
8.7% wetland; Lower 
Taunton: 24.6% developed; 
56.4% forest; 3.4% 
agricultural; 7.5% water; 
8.0% wetland; 

2 

Ross 2014 Pawtuxet  RI/MA 599.6 SWAT 18.2% developed; 67% 
forest; 4.4% agricultural; 
4.6% water; 5.6% wetland; 
0.2% bare rock 

3 

Ross 2014 Blackstone RI/MA 1229 SWAT Upper Blackstone: 28.7% 
developed; 53.1% forest; 
6.1% agricultural; 4.7% 
water; 7.3% wetland; 0.1% 
bare rock; Lower 
Blackstone: 14.6% 
developed; 70.2% forest; 

3 
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6.5% agricultural; 2.3% 
water; 6.3% wetland; 

Sebestyen 
et al 2009 

Sleepers  VT 0.41 Regression 100% forested 3 

Shrestha et 
al 2011 

Upper  
Assiniboine 

Canada 13500 SWAT 55% cropland; 40% forest 2 

Shrestha et 
al 2016 

Onkaparinga Australia 317 SWAT 49.5% pasture; 17% 
grazing; 19.5% bushland; 
8.2% urban; 1.8% 
horticulture; 4% orchards 

1 

Tong et al 
2007 

Little Miami  OH 5840 SWAT 56.2% agricultural; 23.7% 
forest; 17.8% urban; 0.97% 
water; 0.38% other 

1 

Trang et al 
2017 

3S  Laos/ 
Cambodia
/Vietnam 

78500 SWAT 78.76% forest; 13.2% 
agricultural; 1.32% urban 

3 

Tu 2009 Aberjona 
(W4) 

MA 64.7 AVGWLF 18.8% forest, 69.1% 
developed; 1.4% 
agricultural 

1 

Tu 2009 Old Swamp 
(W6) 

MA 11.5 AVGWLF 42.5% forest; 49.6% 
developed; 0.1% 
agricultural 

2 

Tu 2009 Saugus (W3) MA 63.4 AVGWLF 32.2% forest; 56.6 
developed; 0.3 agricultural 

2 

Tu 2009 Neponset 
(W5) 

MA 90.1 AVGWLF 43.9% forest; 31.0% 
developed; 3.5% 
agricultural 

2 

Tu 2009 Ipswich (W2) MA 92.8 AVGWLF 44.7% forest; 42.5% 
developed; 0.8% 
agricultural 

2 

Tu 2009 Stillwater 
(W1) 

MA 77.1 AVGWLF 75.2% forest; 3.7% 
developed; 8.1% 
agricultural 

3 

Tu 2009 Wading (W7) MA 104.9 AVGWLF 63.6% forest; 17.2% 
developed; 3.5% 
agricultural 

3 

Verma et al 
2015 

Maumee OH/MI 17030 SWAT 76% crop; 5% hay; 11% 
urban; 8% forest 

1 

Wagena et 
al 2018 

WE-38 (sub-
watershed of 
Mahantango 
Creek) 

PA 7.3 SWAT 44.5 agricultural; 38.8% 
forest; 3.5 pasture; 6.2% 
developed; 2.2 plantations; 
0.9% fallow and grassland; 
3.1 conservation 

2 

Wang and 
Kalin 2018 

Wolf Bay AL 126 SWAT 1.2% water; 26.4% urban; 
20.9% forest; 9.7% pasture; 
29.9% cropland; 11.9% 
wetland 

1 
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Figure 4-4: Relationship between percent change in N load and percent change in streamflow across climate scenarios in 
“agricultural/developed” watersheds. The black line is the average fitted line (equation shown in the figure) while the grey lines 
represent 95% confidence (solid) and prediction (dashed) intervals.  

 
Figure 4-5: Relationship between percent change in N load and percent change in streamflow across climate scenarios in “mixed” 
watersheds. The black line is the average fitted line (equation shown in the figure) while the grey lines represent 95% confidence 
(solid) and prediction (dashed) intervals. 
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Figure 4-6: Relationship between percent change in N load and percent change in streamflow across climate scenarios in “forested” 
watersheds. The black line is the average fitted line (equation shown in the figure) while the grey lines represent 95% confidence 
(solid) and prediction (dashed) intervals. 

 

4.4.3 Analysis of data from Chesapeake Bay Nontidal Network stations 

In addition to the literature review described above, we carried out an empirical analysis of the 
long-term flow and TN loads estimated at nontidal USGS stations across the Chesapeake Bay 
watershed to look for evidence of different responses to variability in hydrology as a function of 
spatially varying watershed characteristics. 

Flow and TN loads estimated at 101 Chesapeake Bay Nontidal Network stations over 1985-2017 
were retrieved from the USGS (https://doi.org/10.5066/F7RR1X68). To characterize the sensitivity 
of TN loads to inter-annual changes in flow at each station, annual flow and TN loads were 
expressed as percent change from the corresponding long-term average estimated at that 
station. Subsequently, for each station the annual percent change in TN load (from the long-term 
average) was regressed against the corresponding annual percent change in flow, thereby 
providing an estimate of the slope of the relationship between percent change in TN and percent 
change in flow at each station. Slopes near 1 would indicate agreement with the overall findings 
of the literature review and data presented in previous sections, while slopes that significantly 
deviate from 1 would suggest differences across stations in their behavior in terms of TN 
sensitivity to inter-annual variability in flow. Because the relationship between % change TN and 
% change flow showed substantial uncertainty for stations with sparse data (< 10 years), only 
stations with >10 years of data were retained for this analysis, leaving a total of 81 stations out of 
the original 101. 

https://doi.org/10.5066/F7RR1X68
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Although most of the stations had a slope close to 1, a non-negligible number of stations 
exhibited a slope >1 (Figure 4-7), with a relatively clear spatial pattern in the distribution of the 
slopes (Figure 4-8).  

 
Figure 4-7: Distribution of the station-specific slopes that quantify the relationship between percent change in WRTDS-estimated 
TN load and percent change in flow calculated from annual data at 81 Chesapeake Bay nontidal stations with >10 years of data. 
Annual percent changes are calculated as difference from the corresponding long-term mean.  
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Figure 4-8: Spatial distribution of the station-specific slopes that quantify the relationship between percent change in WRTDS-
estimated TN load and percent change in flow calculated from annual data at 81 Chesapeake Bay nontidal stations with >10 years 
of data. Annual percent changes are calculated as difference from the corresponding long-term mean.  

To investigate potential drivers of the observed spatial pattern in %TN-%FLOW slopes across the 
watershed, a set of available candidate covariates was considered that represent landscape, 
physiographic, land use and climatic characteristics hypothesized to influence TN sensitivity to 
hydrology (Table 4-2). As a first exploratory analysis, a Principal Component Analysis (PCA) was 
carried out to visualize the ordination of station-specific TN sensitivity slopes with respect to 
candidate covariates. All variables were standardized before analysis. The ordination biplot 
indicates a tendency of stations with higher %TN-%FLOW slopes to cluster along the right hand 
side of the first principal component (PC1), with a large portion of the stations with lower slopes 
clustering at the opposite end of the first axis (Figure 4-10). The first axis is most strongly 
correlated to variables related to land-use and amount of N input (Table 4-2), with stations with 
higher N sensitivities to flow tending to be associated with high percentages of forested areas in 
the upstream catchment and conversely lower percentages of agricultural areas and lower 
average TN loads and concentrations. 

Table 4-2 Candidate covariates considered in exploring potential drivers of spatial variability in TN sensitivity to changes in flow at 
Chesapeake Bay nontidal stations. Columns “PC1” and “PC2” provide PCA loadings of individual variables quantifying the 
standardized correlation of each variable to each of the first two PCA axes in Figure 4-9. Variables are sorted in order of decreasing 
absolute correlation with respect to the first ordination axis (PC1). 

Variable Description PC1 PC2 
[TN] Long-term average annual TN concentration -0.368 0.0341 
TN_load/ac Long-term average annual TN load -0.3677 0.0837 
%C Fraction of drainage area occupied by agricultural land 

uses 
-0.3231 0.0231 

DVF_rch SPARROW Delivery Variance Factor related to 
groundwater recharge 

-0.2658 0.2501 

BI Long-term average baseflow index -0.2524 -0.0156 
NOx/TN Long-term average annual NOx/TN ratio -0.2425 0.2928 
%N Fraction of drainage area occupied by non-forest natural 

land uses 
-0.2002 -0.1273 

DVF_pca SPARROW Delivery Variance Factor related to Piedmont 
carbonate 

-0.1907 0.0231 

Pcp Long-term average annual rainfall across the drainage 
area 

-0.1834 -0.2048 

Q/ac Long-term average annual flow normalized by drainage 
area 

-0.1779 0.3121 

DVF_evi SPARROW Delivery Variance Factor related to enhanced 
vegetation index 

-0.1773 0.2237 

%D Fraction of drainage area occupied by developed land uses -0.1755 -0.151 
DVF_S2R SPARROW average stream to river Delivery Variance 

Factor 
-0.076 0.116 

T Long-term average annual air temperature across the 
drainage area 

-0.0348 -0.4632 

Q Long-term average annual flow 0.0461 0.3023 
WA Station total drainage area 0.0544 0.2934 
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%P Fraction of drainage area occupied by pasture 0.1061 -0.0245 
DVF_awc SPARROW Delivery Variance Factor related to soil 

available water capacity 
0.1509 0.3292 

Med_slo Median slope across the drainage area 0.2311 0.2918 
%F Fraction of drainage area occupied by forests 0.3583 0.1192 

    

 
Figure 4-10: PCA biplot of station-specific slopes of the relationship between percent change in TN and percent change in flow. 
Each circle represents a station colored according to the respective slope value: 0.7: slopes < 0.7; 0.9: 0.7 ≤ slopes < 0.9; 1.1: 0.9 ≤ 
slopes < 1.1; 1.3: 1.1 ≤ slopes < 1.3; 1.5: 1.3 ≤ slopes < 1.5. For an explanation of variable symbols, see Table 4-2. 

We also explored a multiple linear regression approach to identify the set of covariates that best 
explain the observed variability in %TN-%FLOW slopes. We built regression models using station-
specific %TN-%FLOW slopes as the response variable and using all possible combinations of the 
variables listed in Table 4-2 as candidate predictors. We excluded models including both TN 
concentration and TN load as predictors, because these two variables had the highest degree of 
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collinearity and can be considered as largely representing the same underlying driving process (N 
input). We only considered regression models with up to four predictors to prevent overfitting 
and we selected the best performing model based on the Bayesian Information Criterion (BIC), 
which evaluates models in terms of both goodness of fit and number of estimated parameters 
(i.e., models are increasingly penalized as the number of predictors increases and, as a result, 
more parsimonious models tend to be preferred over more complex models when explanatory 
power is similar). 

We found that a model with TN concentration and median drainage area slope as the two only 
predictors provided the optimal combination of explanatory power and parsimony among all 
possible combinations tested: 

Y = 0.99 – 0.07 * log([TN]) + 0.07 * log(Med_slo)  R2 = 0.40 

Model parameter estimates indicate that stations with lower TN concentrations and higher 
median upstream catchment slopes tend to have higher %TN-%FLOW slopes. Stations with lower 
TN concentrations and higher median catchment slopes generally correspond to sites 
characterized by a high fraction of forested area in their upstream catchments, as also suggested 
by the PCA ordination plot and confirmed by the relatively high correlation of %F (percentage of 
forested area in the upstream catchment of each station) with both log([TN]) (r = -0.82) and 
log(Med_slo) (r = 0.75). Overall, these results suggest that stations characterized by relatively 
high N inputs and largely agricultural or developed watersheds tend to show an approximately 
1:1 relationship between % change in TN and % change in flow at the inter-annual scale, in 
agreement with results of the literature review presented in Section 4.4.2 while relatively less 
impacted catchments exhibit a higher sensitivity of TN load to changes in flow (Figure 4-11).  

Additional work is needed to fully explain this behavior, which could be due to differences in the 
combination of one or more of watershed’s geospatial physical setting, land use composition, 
nutrient inputs and legacy storage, and management practices as well as combination of one of 
these factors. However, it is likely that this difference in behavior across a land-use and 
anthropogenic impact gradient may be the result of the different relative contribution of rainfall-
related changes in atmospheric N deposition in higher- vs. lower-load areas. Specifically, in high 
rainfall years an increase in both flow-related N delivery and wet N atmospheric deposition is 
expected, but the relative contribution of the atmospheric deposition component is expected to 
be higher in areas characterized by relatively lower land-derived N inputs. As a result, the overall 
percent change in TN for a given percent change in flow is expected to be higher in areas where 
atmospheric deposition represents only to a non-negligible portion of the overall N inputs. 

To assess the ability of atmospheric N-deposition to explain this behavior, we calculated the ratio 
of the percent change in TN due to the atmospheric deposition component alone over the 
percent change in flow estimated by the watershed model at each land segment when comparing 
the 2025 climate change scenario to 1995 conditions. The effect of atmospheric deposition was 
then plotted against the average TN load estimated at each land segment (Figure 4-12). Model-
generated data at the land segment scale show a remarkably similar pattern to the variability in 
the %TN-%FLOW slope observed at the nontidal stations, with land segments characterized by 
lower average loads exhibiting a higher relative contribution of atmospheric deposition to the 
overall sensitivity of TN to changes in flow. These results, together with the literature review 
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described above, generally provide evidence in favor of maintaining a 1:1 relationship to capture 
the sensitivity of TN load to changes in flow, with the positive deviations observed in 
progressively less impacted watersheds being largely explained and accounted for by predicted 
changes in wet atmospheric deposition with rainfall (see Section 3.1).  While accounting for the 
increase in TN transport due to changes in wet atmospheric deposition in addition to the 
predicted 1:1 response of TN load to flow provides a means to capture the higher sensitivity to 
hydrology observed in predominantly forested areas, this might result in double counting in 
largely agricultural areas, where an approximately 1:1 relationship between TN load and flow was 
found based on empirical data that should already include the influence of changes in 
atmospheric deposition. However, in predominantly agricultural areas N load from atmospheric 
deposition represents a substantially lower fraction of the overall N inputs compared to largely 
forested areas (Figure 4-13), so that the potential effect of double counting is assumed to be 
negligible. 

  

 
 

Figure 4-11: Variability in station-specific %TN-%FLOW slopes as a function of the long-term average TN load at each station. 
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Figure 4-12: Variability in the relative contribution of rainfall-driven changes in wet N atmospheric deposition to the overall ratio of 
percent change in TN over percent change in flow estimated by the P6 watershed model at each land segment when comparing 
2025 vs. 1995 conditions. The relative contribution of atmospheric deposition is plotted against the average TN load estimated at 
each land segment. 

 
Figure 4-13: Fraction of overall N inputs represented by atmospheric deposition for each load source. Boxes and whiskers represent 
variability across land segments (one data point per land segment and load source combination) and the numbers above each box 
provide the watershed-wide average edge-of-stream TN load (lbs/acre) for each load source. Load source abbreviations: cch: CSS 
Tree Canopy over Turf Grass; ctg: CSS Turf Grass; cfr: CSS Forest; for: True Forest; mch: MS4 Tree Canopy over Turf Grass; nch: Non-
regulated Tree Canopy over Turf Grass; lhy: Legume Hay; hfr: Harvested Forest; pas: Pasture; scl: Specialty Crop Low; mtg: MS4 
Turf Grass; ntg: Non-regulated Turf Grass; ohy: Other Hay; oac: Other Agronomic Crops; sgg: Small Grains and Grains; soy; Full 
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Season Soybeans; dbl: Double Cropped Land; gom: Grain Without Manure; som: Silage Without Manure; gwm: Grain With 
Manure; sch: Specialty Crop High; swm: Silage With Manure. 

 
To assess whether the patterns in TN sensitivity to flow observed at the nontidal stations may be 
substantially confounded by long-term changes in atmospheric deposition or changes due to 
long-term management efforts, we used two approaches: 1) we estimated the slopes of the 
relationship between percent change in TN and percent change in flow using progressively more 
recent subsets of data (last 20 years, last 15 years and last 10 years); 2) we used WRTDS flow-
normalized TN loads as a proxy for long-term changes in N inputs at each station. Specifically, at 
each station we fitted a linear regression using flow-normalized TN load as the dependent 
variable and time (years) as the independent variable. We then used the slope of the regression 
to de-trend the time series of “actual” (not flow-normalized) TN loads at each station. Finally, we 
used this de-trended TN load time series to calculate the annual percent change in TN load and 
regress it against the annual percent change in flow at each station as described above. We thus 
obtained station-specific slopes of the relationship between de-trended percent change in TN and 
percent change in flow. Although there are limitations to both these approaches and more 
sophisticated and comprehensive analyses are warranted in the future to effectively disentangle 
the influence of multiple confounding factors that act over long-term time scales, we found no 
evidence of strong differences in the variability of %TN-%FLOW slopes when considering different 
portions of the available time series or accounting for estimated long-term changes in flow-
normalized loads (Figure 4-14).  Therefore, the results of the analysis of observed data, 
consistent with the extended literature review in Section 4.4.2, indicates support for the 
adoption of a 1:1 relationship for TN load sensitivity to changes in flow. 
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Figure 4-14: Variability in station-specific %TN-%FLOW slopes as a function of the long-term average TN load at each station. 
Slopes are estimated using only the last ten years (upper right panel), 15 years (upper right panel), and 20 years (lower left panel) 
of data and de-trending the time series of TN loads based on estimated long-term trends in flow-normalized TN loads at each 
station (lower right panel). 

 

4.5 Phosphorus Loss Sensitivity to Climate Change 

4.5.1 Agricultural and Natural Land 

Phosphorus transport from land segments and land uses is a function of stormflow, sediment 
transport, soil phosphorus concentration, and applied water extractable phosphorus as described 
in Section 4.    Soil concentrations and applications are not altered in a climate change scenario, 
but stormflow and sediment transport are affected as described above.  Stormflow is defined as 
the sum of HSPF simulated Surface and Interflow outflows.  The time-averaged changes in 
stormflow and sediment transport for climate change scenarios are estimated using the HSPF 
simulation.  The time-averaged model uses simulated time-averaged changes in stormflow and 
sediment transport for the estimation of time-averaged changes in phosphorus transport.  The 
sensitivity coefficients for phosphorus transport are based on results from the Annual Phosphorus 
Loss Estimator (APLE) model.  The detailed derivations of these sensitivities are described in 
Section 4.  Table 4-3 provides a brief summary of phosphorus sensitivities to stormflow and 
sediment losses for major land uses.  The sensitivities show changes in phosphorus transport in 
pounds per acre corresponding to changes in stormflow (inches/acre) and sediment washoff 
(tons/acre).  These sensitivities are additive. 

 

Table 4-3: Time-averaged phosphorus sensitivities (pounds/acre) of major land uses for stormflow (inches/acre) and sediment 
washoff (tons/acre). If applicable, the range shows minimum, mean and maximum sensitivity values for the land uses within each 
category. 

Land use Category Flow Sensitivity Range Sediment Sensitivity Range 
Natural 0.007, 0.019, 0.042 0.012, 0.031, 0.067 
Pasture 0.080 0.126 
Cropland 0.041 0.121 
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4.5.1.1 Soil P history 

The CBP’s Scientific and Technical Advisory Committee (STAC) strongly recommended the primacy 
of soil P as a determinant of P export in Staver et al. 2014.  Section 4.4 of the Phase 6 Watershed 
Model documentation (Chesapeake Bay Program 2017) further describes the dominant influence 
of soil phosphorus concentration on the export of phosphorus from agricultural land uses based 
on evidence from the literature and tests of the mass-balance-based Annual Phosphorus Loading 
Estimator (APLE) model (Vadas, 2014). 

Section 3.9 of the Phase 6 Watershed Model documentation describes the method of calculation 
for county-wide averages of soil P concentrations from 1984 through 2015 using a Bayesian 
model that combines point observations of soil P and runs of the APLE model.  These soil P 
estimates were used in calibration runs of the Phase 6 Watershed Model.  For scenario 
operations, the CBP partnership decided to simulate the long-term effects of a given state of 
management actions.  The soil P used for scenarios is the initial estimate for the scenario year 
with an estimate of the change in soil P given 25 years of the same land management.  For 
example, the soil P used for the 1995 scenario is the 1995 best estimate plus or minus the buildup 
or drawdown in soil P that would occur under 25 years of constant 1995 management.  If the 
base year for the scenario is 2014 or after, 2014 is used as the staring point for the 25-year 
simulation of change in soil P.  Section 3.9.3.2 describes the development of an APLE Emulator 
Model (Equation 4-4) with the coefficients in Table 4-4.  The APLE Emulator Model is used to 
estimate the soil P as a result of holding the management specified in a given scenario constant 
for 25 years.  

Equation 4-4: APLE Emulator Model 

𝑆𝑆𝑚𝑚+1 = 𝑆𝑆𝑚𝑚 + � � (𝑆𝑆𝐻𝐻𝑃𝑃𝑡𝑡𝐻𝐻𝑜𝑜 ∗ 𝐶𝐶𝐻𝐻𝑒𝑒𝑃𝑃𝑃𝑃𝐷𝐷𝑃𝑃𝐷𝐷𝑒𝑒𝐻𝐻𝑡𝑡)
𝑁𝑁𝑁𝑁𝑠𝑠𝑁𝑁𝑠𝑠𝑁𝑁𝑟𝑟𝑠𝑠

𝑚𝑚=1

� ∗ (1 − 0.95 ∗ log75 𝐷𝐷) 

Table 4-4: Factors used in the APLE Emulator Model 

Factor unit Coefficient 
Solid Manure pound/acre/year TP 0.151 
Liquid Manure pound/acre/year TP 0.154 
Fertilizer pound/acre/year TP 0.0559 
Biosolids pound/acre/year TP 0.00463 
Uptake pound/acre/year TP -0.159 
Sediment Loss ton/acre/year -0.208 
Stormflow inches/year -0.0355 
Percent 
Incorporation 

percent 0.0479 

Percent Mixing percent -0.0508 
Depth of 
Incorporation 

inches 0.183 

Precipitation inches/year -0.00152 
Clay percent percent Clay > 15:           0.160 

Else:           0.000   
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Factor unit Coefficient 
Organic Matter percent Clay >15:         -0.549 

Else:          0.000            
Local Adjustment ppm Mechlich 3 Varies 

 

Inspection of Table 4-4 shows that three of factors have predicted changes due to climate change. 
Precipitation, stormflow, and sediment loss all contribute to the evaluation of soil P levels.  Higher 
values for each of these parameters would tend to deplete the soil phosphorus faster as more 
phosphorus is transported away from the soil.  The negative coefficients in Table 4-4 indicate that 
there is an inverse relationship between future soil P levels and precipitation, runoff, and 
sediment loss.  The depletion of the soil is caused by the increased phosphorus loads which are 
predicted by CAST due to increases in stormflow and sediment.   

The depletion of the soil P lessens the total impact of climate change.  Using the sensitivities for 
stormflow, sediment and soil phosphorus in Section 4 of the Phase 6 documentation, the values 
in Table 4-4, and Equation 4-4, it can be calculated that the increase in load due to the increase in 
sediment loss is about 20% lower due to the inclusion of soil P depletion.  The increase in load 
due to additional precipitation is about 12% lower due to the inclusion of soil P depletion, 
assuming that 50% of the additional precipitation is converted to runoff. 

4.5.2 Developed Land  

Two sources of information were considered to assess the impact of climate change-driven 
changes in hydrology on TP loads from developed land uses: 1) a literature review of small-scale 
studies that have simulated flow and TP loads under climate change scenarios in predominantly 
developed watersheds; and 2) an empirical analysis of data from the National Stormwater Quality 
Database (Maestre and Pitt, 2005).  The results of the analysis indicate that a slope of 1 between 
percent TP change and percent flow change is appropriate for developed land, reflecting no 
change in average concentration of TP as flow changes.  This result is compared to other land 
uses for context in Section 4.5.2.3 

4.5.2.1 Literature review 

To assess the impact of potential climate change-driven changes in hydrology on TP loads from 
developed land uses, a review of the relevant literature was carried out. To be included in this 
review a study must have either been conducted in a watershed/site where > 50% of the study 
area was defined as urban/developed or, if conducted in predominantly agricultural watersheds, 
reported results of climate change-driven changes in TP loads separately for developed land uses. 
Both empirical and modeling studies were considered. A total of six studies were found that 
matched these criteria (Table 4-5), and a brief description of each study`s main characteristics 
and methods is provided in the following paragraphs. 

Alamdari et al. (2017) used EPA`s Storm Water Management Model (SWMM) to assess the 
impacts of climate change on runoff and water quality in the urbanized Difficult Run watershed 
(Fairfax, VA). The SWMM model was calibrated and verified to observations from two USGS 
stream gauges in the watershed. Historical (1971–1998) and future (2041–2068) precipitation and 
temperature projections from the North American Regional Climate Change Assessment Program 
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(NARCCAP) were used to run the model and compare historical vs. climate change-driven flow 
and constituent loads. Climate change projections were based on only one of the NARCCAP 
products (MM51-CCSM, greenhouse gas scenario A2), which was selected based on historical 
model performance in the study area.  

Xiang (2017) quantified the effects of climate change on streamflow and nutrient loads in the 
suburban Wilde Lake watershed (Columbia, MD) using the Soil and Water Assessment Tool 
(SWAT). Data from one USGS gauging station were used to calibrate and validate the model, and 
six downscaled and bias-corrected CMIP5 climate models were selected based on their predictive 
accuracy over the eastern United States and their representativeness of a broad range of future 
climates. Predictions corresponding to up to four RCP scenarios were used for each climate 
model. The SWAT model was run using: 1) precipitation and temperature time series hindcasts of 
1965–2015 from each climate model and 2) precipitation and temperature predicted by each 
climate model x RCP scenario combination for the future period 2016–2099. For each climate 
model and RCP scenario, annual streamflow and load values averaged over 2080–2090 at the 
watershed outlet were compared to values averaged over 1970–1989. 

Pyke et al. (2011) simulated changes in annual runoff and constituent loads under five 
precipitation-change scenarios and three hypothetical land use scenarios designed for the 
redevelopment of a former military base near Boston, MA. Of the three land use scenarios (one 
representative of low-intensity suburban development, one representative of a mixed-use 
configuration and one representative of an undeveloped site), only results from the first two 
scenarios were considered in this review, because the third scenario was more representative of 
natural rather than developed land use. Precipitation scenarios were developed using an 
observed historical time series (1996–2005) of daily precipitation from a local NOAA weather 
station. Specifically, five hypothetical future change scenarios were obtained by applying the 
delta change factor approach. Of the five precipitation change scenarios presented in the 
manuscript, only three were retained in this review because the other two did not entail a change 
in precipitation volume but rather only a change in the distribution of precipitation across events 
with different magnitudes. The three scenarios retained here corresponded to a 20% increase in 
rainfall volume, a 20% decrease in rainfall volume and a 3% increase in rainfall volume distributed 
unevenly across rainfall events that ultimately resulted in a 10% increase in the proportion of 
annual precipitation occurring in the 5% largest events. Potential future changes in temperature 
were not considered during simulations, which were performed with EPA`s Smart Growth Water 
Assessment Tool for Estimating Runoff (SG WATER). SG WATER is a simplified stormwater 
modeling tool designed to provide coarse exploratory information on possible impacts of 
development scenarios on runoff quantity and quality. It is important to note that, as the authors 
of the study indicate, “SG WATER is not calibrated or validated against observed stormwater 
runoff values, and it is therefore appropriate only for evaluating relative changes resulting from 
different scenarios and not for providing absolute, quantitative predictions or comparing to 
simulations from other hydrologic models”.  

The work by Munson et al. (2018) differs substantially from the studies mentioned above in that it 
uses a data-driven approach to estimate the sensitivity of TP loads from an urban stream to 
changes in a set of variables, including temperature and precipitation. Rather than simulating 
projected changes in climate variables, the authors used a multivariate regression approach to 
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model the “elasticity” of historical (2007–2014) monthly TP loads estimated at a USGS gauging 
station to simultaneous changes in observed monthly precipitation, temperature, streamflow and 
number of CSO events. Elasticity is defined in the manuscript as the relative change in loads 
divided by the relative change in each of the predictors that are simultaneously included in the 
regression model. The work was conducted in the Alewife Brook, a heavily urbanized watershed 
near Boston, MA. As the authors of the study recognize, this approach has some obvious 
limitations, including the lack of incorporation of potentially important explanatory variables in 
the empirical model, such as changes in land use or population growth, or the level of correlation 
among predictors that makes the separation of their individual effects challenging. 

Tong et al. (2006) used EPA`s Better Assessment Science Integrating Point and Nonpoint Sources 
(BASINS) model to estimate climate-driven changes in runoff quantity and quality in the Lower 
Great Miami River Basin in southwest Ohio. Although the watershed is predominantly 
agricultural, results specific to urban land use areas are provided in the manuscript. The 
watershed model was calibrated over the period 1975–1984 and validated over the period 1985–
1994 using data from a USGS gauging station.  Observed precipitation and temperature time 
series were modified to simulate four different future scenarios using delta change factors based 
on projected climate-related changes from two GCMs (IPCC and UK Hadley Centre`s climate 
model).  The manuscript provides percent changes in TP loads associated with select percent 
changes in precipitation but does not provide the corresponding percent changes in flow.  

Fischbach et al. (2015) used the Chesapeake Bay Phase 5.3.2 Watershed Model to simulate the 
impact of different future climate scenarios on streamflow and TP loads from urban land uses 
within the Patuxent River watershed.  The watershed model was run using 1) observed historical 
(1984–2005) precipitation and air temperature data and 2) downscaled temperature and 
precipitation projections from six IPCC GCMs, three emission scenarios and two future time 
periods (2035–2045 and 2055–2065), thereby resulting in a total of 36 climate-altered hydrology 
projections.  Authors of the study kindly provided average annual streamflow and TP load data 
estimated for the observed historical period and the 36 climate scenarios. 

For each study, average flow and TP load estimated under climate change conditions were 
expressed as percentage change from their corresponding historical baselines.  Percentage 
changes in TP load across all studies were then regressed against percentage changes in flow 
(Figure 4-15).  A hierarchical modeling approach was used, where the regression slope and 
intercept were assumed to derive from a common hyperdistribution and were allowed to vary 
across studies, thereby accounting for intra-class correlation arising because observations within 
each study are not independent.  

Although only a limited number of studies were found, they span a relatively broad range in 
terms of size of the study area, land use characteristics and level of complexity of the modeling 
approach adopted (Table 4-5).  Despite this large inter-study variability, all studies appear to 
indicate that a linear relationship exists between climate-driven changes in flow and 
corresponding changes in TP load, with a 1% change in flow corresponding to an approximately 
1% change in TP load when averaging across studies (Table 4-5).  

Table 4-5: Main characteristics of the studies used to assess the impact of climate change-driven changes in hydrology on TP loads 
from developed land uses. The column “Model” provides the modeling tool used either to simulate TP loads in the study area or to 
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analyze observed load data. The column “Climate simulation approach” reports the method adopted to simulate expected changes 
in climate variables (Delta change factor: one or more multipliers were applied to historical time series of climate variables to 
generate modified time series that represent expected future changes; GCM: hourly or daily precipitation and temperature data 
predicted by one or more GCMs were directly used as input to a watershed model to generate loads expected under future climate 
scenarios). The column “T change” provides the range of projected temperature increases/decreases that were considered in each 
study. 

Reference Site Area 
(km2) Land use Model 

Climate 
simulation 
approach 

T change 

Pyke et al. 
2011 

Naval Air 
Station, MA 5.7 

Built environment 
with 64-71% open 

space 
SG WATER 

Delta 
change 
factor 

Not 
assessed 

Alamdari 
et al. 2017 

Difficult Run 
watershed, 

VA 
150 

57% urban 
development; 8% 

commercial/industrial; 
11% transportation; 

24% open space 

SWMM GCM -1.2/+4.1 °C 

Munson 
et al. 2015 

Alewife 
Brook 

watershed, 
MA 

22 
61% residential; 11% 

commercial; 11% 
open land; 17% other 

Multiple 
regression 

Analysis of 
historical 
climate 

variability 

+1/+5% 

Tong et al. 
2006 

Lower Great 
Miami 

watershed, 
OH 

3600 71% agricultural; 17% 
forest; 12% urban BASINS 

Delta 
change 
factor 

+2/+4 °C 

Xiang, 
2017 

Wilde Lake 
watershed, 

MD 
4.9 Fully built out, 32% 

impervious SWAT GCM -0.2/+7.2 °C 

Fischbach 
et al. 2015 

Patuxent 
River 

watershed, 
MD 

2479 
22% developed; 18% 

agricultural; 9% 
grassland; 50% forest 

CBP 5.3.2 GCM +0.7/+2.8 °C 
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Figure 4-15: Relationship between % Change in TP Load and % Change in Flow across a set of independent studies. The black line is 
the average (population-level) fitted line resulting from a hierarchical linear regression where intercept and slope are allowed to 
vary across studies. The grey lines represent 95% confidence (solid) and prediction (dashed) intervals. Note that results from Tong 
et al. are not included in this regression because that study reported % changes in rainfall but not % changes in flow. The equation 
of the population-level regression is: %TP = 4.07 + 0.98 * %FLOW, and the standard errors associated with the intercept and slope 
estimates are 3.59 and 0.16, respectively. 

4.5.2.2 Analysis of National Stormwater Quality Data 

The National Stormwater Quality Database (NSQD) contains data on stormwater runoff quantity 
and quality collected in urban areas throughout the US (Maestre and Pitt, 2005). The most 
updated version of the dataset (Version 4.02, last updated in January 2015 and available at 
http://www.bmpdatabase.org/nsqd.html) contains data on a total of 9051 storm events from 594 
sampling locations across 87 counties in 30 states. Sampling years range from 1977 to 2013 and 
only samples collected at drainage system outfalls are included in the database.  

For this analysis, we retained only storm events that have paired data on runoff TP concentration 
and precipitation depth, leaving a total of 4419 samples from 351 sampling locations across 57 
counties in 22 states. We then regressed TP concentration against precipitation depth to 
investigate how urban runoff TP concentration may change as a function of increasing rainfall. To 
account for the potential impact of different types of urban land use on the relationship between 
TP concentration and rainfall depth, we grouped sampling locations based on the principal land 
use reported in the database and estimated one regression per group. We found that the 
majority of land uses exhibit a regression slope that is not significantly different from zero (Figure 
4-16), suggesting no significant changes in runoff TP concentration with increasing rainfall and 
therefore generally corroborating the findings from the literature review presented above.  

http://www.bmpdatabase.org/nsqd.html
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Figure 4-16: Mean and 95% confidence intervals estimates for the slopes of the relationship between log(TP concentration) (mg/L) 
and log(Precipitation depth) (in) estimated from National Stormwater Quality data. Slopes are estimated for sites characterized by 
different dominant urban land use types. CO: Commercial; ID: Industrial; RE: Residential; IS: Institutional; FW: Highways and/or 
Freeways; OP: Open Space; UNK: Unknown. If there is more than one principal use, it is considered a mix and indicated with the 
suffix _MIX after the dominant land use. 

Despite the relatively large uncertainties and prevailing lack of statistical significance, most of the 
land uses do tend to exhibit a negative mean slope (Figure 4-16). To estimate the effect of 
adopting a negative slope consistent with results shown in Figure 4-16 on the sensitivity of 
developed TP loads to climate change, we compared the changes in TP load predicted under 2055 
climate conditions following two contrasting assumptions: a) a 1% increase in flow results in a 1% 
increase in TP load, with TP concentrations remaining constant across climate change scenarios, 
and b) both flow and TP concentrations are varied across climate change scenarios, with TP 
concentrations changing as a function of future rainfall according to the mean of the slopes in 
Figure 4-16 (-0.05 in log-log space). We performed this comparison for an example land segment 
in the watershed model domain (Fairfax County, land segment ID: N51059) and separately for 
two types of developed land uses, an impervious land use (MNR - MS4 Buildings and Other) and a 
pervious one (MTG - MS4 Turf Grass). Specifically, for each land use we estimated two sets of 
daily TP concentrations predicted under 2055 climate conditions: a) one set was estimated by 
scaling the time series of daily 1991-2000 TP concentrations by a constant factor to ensure a 
match between average annual % change in TP load and average annual % change in flow under 
the no-change-in-concentration assumption, and b) another set was estimated by modifying the 
scaled 1991-2000 daily TP concentrations according to the mean of the slopes in Figure 4-16 (-
0.05 in log-log space) and the expected mean change in rainfall between 1995 and 2055, with 
appropriate back-transformation to the original, unlogged scale. Both sets of daily TP 
concentrations were then multiplied by predicted 2050 daily flow values to obtain two sets of 
future TP loads. Results of these calculations (Table 4-6) indicate that adopting a negative TP-
rainfall slope that is consistent with our analyses of the NSQD data has a largely negligible effect 
on predicted changes in TP loads on developed land resulting from climate change. We interpret 



 
79 

these results as further corroboration for the adoption of a 1:1 relationship as our current best 
estimate of the response of TP load to climate change-driven changes in flow on developed land. 

Table 4-6: Comparison of predicted % changes in flow and TP load on two developed land uses in Fairfax County, VA when 
comparing 2055 and 1995 climate conditions. Percent changes are calculated on an average annual scale. The Load factor column 
reports the multiplicative load factor necessary to convert the estimated % change in TP load under a constant concentration 
assumption to the % change in TP load expected when TP concentration varies as a function of rainfall according to a slope of -0.05 
in the log-log space. MNR: MS4 Buildings and Other; MTG: MS4 Turf Grass. 

Land 
use 

% change 
flow 

% change TP load under 
constant concentration 

assumption 

% change TP load under 
varying concentration 

assumption 

Load factor 

MNR 7.13 7.13 6.74 0.95 
MTG 8.24 8.24 7.78 0.94 

 

4.5.2.3 Comparison of results from literature review with TP load sensitivities used in the Phase 6 
Watershed Model for non-developed land uses 

To compare the proposed 1:1 relationship between percent change in TP load and percent 
change in flow on developed land uses with TP sensitivities that are described for the Phase 6 
model in Section 4.5.1 for other land uses or sectors, percent changes in TP load and flow 
predicted for a few example non-developed land uses under 2025 climate conditions were 
estimated with respect to 1995 climate conditions. When comparing responses of developed vs. 
non-developed land uses, it is critical to distinguish between stormflow and total flow. While on 
impervious land stormflow and total flow essentially represent the same quantity, in pervious 
land stormflow is only a portion of total flow, and model results indicate that overall percent 
changes in total flow generally represent only a fraction of the corresponding percent changes in 
stormflow on pervious land (Figure 4-17). As a result, when regressing percent changes in TP load 
against percent changes in flow, the slope of the relationship will be different, and generally 
lower, when considering stormflow rather than total flow in pervious land uses. The difference 
between stormflow and total flow is attenuated in developed land uses, which are typically made 
up of a mix of pervious and impervious surfaces. To offer an appropriate comparison of TP 
sensitivities across land uses with different fractions of impervious surfaces and thus different 
ratios of stormflow to total flow, percent changes in TP load are expressed with respect to 
percent changes in both stormflow and total flow. Percent changes in flow obtained from 
published studies were converted to approximate percent changes in stormflow using output 
from the Phase 6 Watershed Model. Specifically, output from the 2025 and 1995 climate 
scenarios was used to estimate the ratio between percent change in stormflow and percent 
change in total flow over developed areas in each land segment. That ratio varies across the land 
segments with the fraction of impervious area (Table 4-7), and the estimated median, 5%, and 
95% percentile values of that ratio were used to convert the TP load sensitivity to total flow 
estimated from published studies to a corresponding approximate range of sensitivities to 
stormflow (Table 4-8).  
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Figure 4-17: Example of relationship between percent change in total flow and corresponding percent change in stormflow 
estimated by the Phase 6 Watershed Model at each land segment  on a pervious land use (grain with manure) when comparing 
2025 and 1995 climate scenarios. 

Table 4-7 Characteristics of the distribution of the fraction of impervious area, percent change in total flow and percent change in 
stormflow estimated by the Phase 6 Watershed Model at each land segment when comparing 2025 and 1995 climate conditions. 
Land segments with higher fractions of impervious area tend to exhibit a larger ratio of percent change in stormflow/percent 
change in flow. 

Percentile % Impervious 
Area 

% Change in 
Flow 

% Change in 
Stormflow 

% Change in Stormflow / 
% Change in Flow 

95% 55% 5.4% 7.0% 2.70 
75% 39% 3.6% 5.2% 1.69 
50% 32% 2.6% 4.0% 1.50 
25% 27% 1.7% 2.8% 1.32 
05% 22% 0.8% 1.5% 1.15 

 

Table 4-8 TP load sensitivities to changes in total flow and stormflow estimated by the Phase 6 Watershed Model for a few 
example load sources and land uses when comparing 2025 and 1995 climate conditions. The last row of the table provides the TP 
load sensitivity to changes in flow proposed after a review of published small-scale studies.  

Load Sources % Change in TP Load per Unit % 
Change in Flow 

% Change in TP Load per Unit % Change 
in Stormflow 

Grain with Manure 1.54 0.86 
Full Season Soybeans 1.72 0.97 

Pasture 0.96 0.42 
Forest 1.41 0.49 
Crops 1.41 0.79 

Pasture & Hay 1.16 0.51 
Natural 1.27 0.49 

Developed 1.00 0.67 (0.37 – 0.87)* 
*Values estimated by dividing the TP sensitivity to changes in total flow (1.00) by the median (5-95% percentiles) ratios of percent 
change in stormflow/percent change in total flow estimated by the Phase 6 Watershed Model across land segments when 
comparing 2025 and 1995 climate change scenarios 
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4.6 BMP effectiveness change 

As climate change alters the intensity of storm events the effectiveness of BMPs will likely 
change, particularly for those BMPs that control nutrients and sediment by controlling flow.  
Studies have found decreasing BMP effectiveness under future climate scenarios using process-
based models.  For example, Bosch et al. 2014 and Woznicki and Nejadhashemi 2011, modeled 
agricultural BMPs and Fischbach et al, 2014 modeled developed BMPs.  However, the CBP 
partnership has determined that, while acknowledging the likelihood of decreased BMP 
performance, there is not sufficient information available to model the effect at this time. 

The CBP’s Principals’ Staff Committee (PSC) gave specific direction to the CBP partnership at their 
December 2017 meeting to “… develop a better understanding of the BMP responses, including 
new or other emerging BMPs, to climate change conditions”.  The PSC gave instructions to the 
Management Board to develop a multiyear prototype science and technical program on new 
stormwater management and BMPs responsive to the new climate reality of increased flow 
volumes and intensities is recommended using available annual funding.  The prototype program 
is suggested to run until 2025, and if successful, the CBP partnership could decide to continue the 
program.  The program would be specific and directed toward the specific CBP partnership 
applied scientific needs.  The Climate Resiliency Workgroup and the WQGIT will examine the top 
tier agricultural/urban BMPs and actions in the WIP3s that are vulnerable to future climate risk, 
with initial emphasis on multi-year BMPs that contribute substantially to WIP nutrient and 
sediment reductions and/or are structural in nature or persist longer in the landscape. 

4.7 Landscape processing effects 

4.7.1 Changes in speciation 

An empirical relationship between WRTDS-estimated Total Nitrogen (TN) and Nitrate (NO3) per 
acre loads from the Chesapeake Bay Nontidal Network stations is currently used in the Phase 6 
Watershed Model to estimate the fraction of the annual edge-of-river TN load that is NO3 at each 
river segment (Figure 4-18; Section 10.5.2.1.1 CAST 2017).  
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Figure 4-18: Relationship between NO3 and TN load per acre obtained from Chesapeake Bay Nontidal stations and used in the 
Phase 6 Watershed Model to estimate edge-of-river annual NO3 loads at each river segment (for more information, see Section 10 
of the Phase 6 CAST and Watershed Model documentation, Chesapeake Bay Program 2017). Black circles represent the long-term 
average annual TN and NO3 loads estimated at each nontidal station, while gray circles represent annual TN and NO3 loads. 

This relationship was also used for preliminary climate change scenario development to predict 
the response of N speciation, hereby characterized as the ratio of NO3/TN, to climate change-
driven changes in hydrology and TN loads. However, during the 2018 Chesapeake Bay Program 
Climate Change Modeling 2.0 Workshop which is not yet published, members of the watershed 
breakout group suggested that this empirical relationship might be primarily driven by spatial 
differences in land use across stations and may therefore not be representative of the expected 
response of N speciation to climate change-driven changes in hydrology. To address these 
concerns, long-term time series of TN and NO3 loads available at Chesapeake Bay Nontidal 
stations (https://doi.org/10.5066/F7RR1X68) were further analyzed to explore differences in N 
speciation responses due to between-station changes in long-term average N loads, a proxy for 
long-term average N inputs and thus level of anthropogenic impact, and within-station inter-
annual variability in hydrology. A review of process-based studies that quantified changes in both 
organic and inorganic N species under climate change scenarios was also carried out in the spirit 
of a “multiple lines of evidence” approach. 

4.7.1.1 Literature review 

We found six modeling studies that compared changes in NO3 and organic nitrogen (ON) loads 
under climate change scenarios, all of which were based on SWAT simulations (Table 4-9). The 
limited number of studies did not warrant any consideration of potential differences in responses 
across land uses or other gradients of watershed characteristics, and an overall linear regression 
was fit across all six studies to quantify the relationship between expected percent changes in 
NO3 and percent changes in ON loads (Figure 4-19). Although results from the linear regression 
appear to suggest a relatively lower increase in NO3 associated with climate change-driven 
increases in ON, resulting in an overall decrease in the NO3/(ON+NO3) ratio, the limited number 
of studies and substantial uncertainty in the estimated relationship prevent from drawing reliable 
conclusions on the relative response of inorganic and organic N forms to climate change impacts. 

Table 4-9: Main characteristics of the studies used to assess the relative response of NO3 and organic nitrogen (ON) loads to 
climate change scenarios.  

Reference River State/ 
Country 

Watershed 
Area (km2) 

Model Land use 

El Khoury 
et al 2015 

South Nation Ontario, 
Canada 

3858 SWAT 57.8% agricultural; 41.03% 
forest 

Hanratty 
& Stefan 
1998 

Cottonwood  MN 3400 SWAT 52% rangeland; 46% crop 

Moshtaghi 
et al 2018 

Golgol  Iran 280 SWAT 27% cultivated 

Ross 2014 Woonasquatucket-
Moshassuck  

RI/MA 192.6 SWAT 38.2% developed; 49.1% 
forest; 4.5% agricultural; 2% 
water; 6.2% wetland 

https://doi.org/10.5066/F7RR1X68
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Reference River State/ 
Country 

Watershed 
Area (km2) 

Model Land use 

Ross 2014 Ten Mile  RI/MA 143.6 SWAT 40.9 developed; 46.2% 
forest; 4.5% agricultural; 2% 
water; 6.3% wetland 

Ross 2014 Taunton RI/MA 1250.2 SWAT Upper Taunton: 36% 
developed; 50.5% forest; 
1.1% agricultural; 2.9% 
water; 9.5% wetland; Mid 
Taunton: 17.6% developed; 
62.8% forest; 4.7% 
agricultural; 6.3% water; 
8.7% wetland; Lower 
Taunton: 24.6% developed; 
56.4% forest; 3.4% 
agricultural; 7.5% water; 
8.0% wetland 

Ross 2014 Pawtuxet  RI/MA 599.6 SWAT 18.2% developed; 67% 
forest; 4.4% agricultural; 
4.6% water; 5.6% wetland; 
0.2% bare rock 

Ross 2014 Blackstone RI/MA 1228.5 SWAT Upper Blackstone: 28.7% 
developed; 53.1% forest; 
6.1% agricultural; 4.7% 
water; 7.3% wetland; 0.1% 
bare rock; Lower 
Blackstone: 14.6% 
developed; 70.2% forest; 
6.5% agricultural; 2.3% 
water; 6.3% wetland 

Tong et al 
2007 

Little Miami  OH 5840 SWAT 56.2% agricultural; 23.7% 
forest; 17.8% urban; 0.97% 
water; 0.38% other 

Wang and 
Kalin 2018 

Wolf Bay AL 126 SWAT 1.2% water; 26.4% urban; 
20.9% forest; 9.7% pasture; 
29.9% cropland; 11.9% 
wetland 
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Figure 4-19: Relationship between percent change in NO3 load and percent change in ON load under climate change scenarios from 
six published studies. The grey lines represent 95% confidence (solid) and prediction (dashed) intervals. The equation of the mean 
regression is: %NO3 = 3.67 + 0.58 * %ON (intercept standard error = 2.89, slope standard error= 0.09). 

4.7.1.2 Analysis of data from Chesapeake Bay Nontidal Network stations 

The relationship found between NO3 and TN loads when pooling data across all stations (either 
individual annual loads or long-term average annual loads; Figure 4-18) implies that an increase in 
TN load will result in an increase in the NO3/TN ratio (Figure 4-20). This type of response is often 
expected as a result of land-use and/or management-driven changes in N loads, with several 
studies showing that predominantly agricultural watersheds tend to exhibit higher NO3/TN ratios 
compared to more pristine regions characterized by relatively lower anthropogenic N inputs 
(Scott et al., 2007; Sponseller et al., 2014). However, when looking at the inter-annual response of 
the NO3/TN ratio within individual stations, several stations appear to show an opposite pattern, 
with increasing TN loads being associated with lower NO3/TN ratios (Figure 4-21, right panels). To 
simultaneously model the different response of the NO3/TN ratio to changes in TN load at 
different scales (across-stations, where spatial differences in land use and watershed 
characteristics may play a critical role, and within-stations, where inter-annual variability in 
hydrology represents an important driver), we expanded the Phase 6 linear regression through a 
hierarchical modeling approach. Hierarchical models are especially well suited to model data that 
are structured into distinct groups, such as samples collected at different sites (Gelman and Hill, 
2007) and they offer several benefits, including the ability to: 1) simultaneously take advantage of 
all available data, 2) improve estimates of model coefficients for groups with lower sample size 
and/or higher variability by “borrowing strength” from groups with larger sample size and higher 
strength of information, 3) better account for different sources of uncertainty across the levels of 
the model hierarchy, and 4) incorporate predictors that act at different levels of the hierarchy, 
thereby simultaneously modeling variation at the individual data-level and at the group-level 
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(Cressie et al., 2009; Gelman and Hill, 2007; Qian and Shen, 2007; Stow et al., 2009). In this work, 
we built a model that quantifies the relationship between annual NO3 and TN loads, where the 
coefficients that characterize that relationship vary by station. 

After several tests, we found that a non-linear formulation of the functional relationship between 
annual NO3 and TN loads better fitted the observed data and offered a more realistic 
representation of the behavior of NO3/TN dynamics near the edges of the range of observed TN 
loads. The deterministic form of the model is thus a non-linear regression between WRTDS-
estimated annual NO3 loads per acre (response variable) and annual TN loads per acre (individual-
level predictor) at each station. In its basic form, the chosen non-linear functional form, a 
modification of Holling`s Type III functional response widely used in animal ecology, has the same 
number of parameters (2) of a linear regression (α and β in Eq. 2).  The hierarchical model 
formulation can be represented as follows. Each individual observation (annual nitrate for year i 
at a station j, NO3i,j) is modeled as arising from a normal distribution with mean ŷi,j and standard 
deviation σ (Eq. 1), where ŷi,j represents the mean deterministic model prediction for the 
individual observation NO3i,j as a function of the predictor TNi,j (Eq. 2). The two parameters that 
quantify the functional relationship between NO3i,j and TNi,j are allowed to vary across stations, 
i.e. instead of estimating one single value of α and β for the whole dataset, as is typically done in 
a classical regression approach, different αj and βj values are estimated for each station j and 
these station-specific αj and βj values are themselves modeled as random variables arising from 
probability distributions. As mentioned above, the hierarchical structure of the model allows for 
the incorporation of station-level covariates that may help explain the between-station variation 
in model coefficients. We then modeled both sets of parameters as arising from normal 
distributions whose respective means are estimated as a linear function of the long-term average 
TN load per acre estimated at each station (𝑃𝑃𝑅𝑅����𝑗𝑗) (Eqs. 3 and 4). 

 

NO3i,j ~ 𝑅𝑅𝐻𝐻𝑜𝑜𝐻𝐻𝐻𝐻𝐷𝐷(ŷi,j,σ)         Eq. 1 

ŷ𝑚𝑚,𝑗𝑗 = 𝛼𝛼𝑗𝑗 ∗𝑇𝑇𝑁𝑁𝑖𝑖,𝑗𝑗

�𝛽𝛽𝑗𝑗
2+𝑇𝑇𝑁𝑁𝑖𝑖,𝑗𝑗2

          Eq. 2 

αj ~ 𝑅𝑅𝐻𝐻𝑜𝑜𝐻𝐻𝐻𝐻𝐷𝐷(a0  +  a1 ∗  𝑃𝑃𝑅𝑅����𝑗𝑗,σ𝛼𝛼)      Eq. 3 

βj ~ 𝑅𝑅𝐻𝐻𝑜𝑜𝐻𝐻𝐻𝐻𝐷𝐷(b0  +  b1 ∗  𝑃𝑃𝑅𝑅����𝑗𝑗,σβ)      Eq. 4 

 

where: 
NO3i,j:   WRTDS-estimated NO3 load (lbs/ac) in year i at station j 
ŷi,j:   mean deterministic model prediction for NO3i,j 
TNi,j:   WRTDS-estimated TN load (lbs/ac) in year i at station j 
𝑃𝑃𝑅𝑅����𝑗𝑗:   long-term average TN load (lbs/ac) at station j 
αj, βj:  station-specific coefficients quantifying the non-linear relationship between NO3 

and TN at each station 
a0, a1, b0, b1:  coefficients quantifying the relationship between station-specific model 

coefficients and 𝑃𝑃𝑅𝑅����𝑗𝑗. 
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σ, σα, σβ:  within- and across-station variances  

Model parameters` posterior distributions were estimated within a Bayesian framework using a 
Markov Chain Monte Carlo (MCMC) algorithm implemented in the software JAGS (Plummer, 
2003) interfaced with R (R Core Team, 2015) through the R package rjags (Plummer, 2015). We 
ran three parallel MCMC chains with 50,000 iterations, a burn-in period of 25,000 iterations, and 
a thinning factor of 100 to reduce auto-correlation. We considered the chains to have converged 
when Ȓ<1.1 for all model parameters. 

Model parameter estimates are provided in Table 4-10. The flexible hierarchical formulation 
allows for the estimation of an overall average regression, but also of station-specific regressions, 
whose parameters can be estimated for new stations outside of the current dataset as linear 
functions of the average long-term TN load at each station (Figure 4-22). The overall average 
regression is very close to the Phase 6 regression (Figure 4-22), while the station-specific 
regressions appear to better capture the observed response of the NO3/TN ratio to inter-annual 
variability in hydrology. The hierarchical model developed and parametrized using the network of 
monitoring data and the formulation described above (Eqs. 1-4) can be applied for estimating the 
mean N speciation response of a specific catchment (or river segment) J in the watershed model 
using Eq. 5: 

𝑅𝑅𝐶𝐶3𝑚𝑚,𝑗𝑗=𝐽𝐽 =
�𝑠𝑠𝑜𝑜+𝑠𝑠1𝑇𝑇𝑁𝑁����𝑗𝑗=𝐽𝐽�×𝑇𝑇𝑁𝑁𝑖𝑖,𝑗𝑗=𝐽𝐽

��𝑏𝑏𝑜𝑜+𝑏𝑏1𝑇𝑇𝑁𝑁����𝑗𝑗=𝐽𝐽�
2
+𝑇𝑇𝑁𝑁𝑖𝑖,𝑗𝑗=𝐽𝐽2

        Eq. 5 

This revised regression is used in the model for estimating the edge-of-river N speciation 
response. The revised regression aids in the quantification of two different components of a 
watershed N speciation response – the average annual response where speciation changes are 
due to drivers such as land use, nutrient inputs, watershed characteristics, and management 
practices, and the annual response where speciation changes annually with TN due to hydrologic 
drivers (Table 4-11). Specifically, when estimating changes in N speciation due to annual 
variability in hydrology and climate change at catchment J, the long-term average TN load for that 
catchment (𝑃𝑃𝑅𝑅����𝑗𝑗=𝐽𝐽 in Eq. 5) is held constant. On the other hand, when estimating changes in the 
average NO3/TN ratio due to differences in land-use, nutrient inputs and management practices, 
𝑃𝑃𝑅𝑅����𝑗𝑗=𝐽𝐽 is varied, causing catchment J to shift position along the red line in Figure 4-22. For a 
climate change scenario application, 𝑃𝑃𝑅𝑅����𝑗𝑗=𝐽𝐽 is the long-term average annual TN estimated for 
catchment J under that specific scenario but before accounting for the impact of climate change. 
For all other scenario applications, 𝑃𝑃𝑅𝑅����𝑗𝑗=𝐽𝐽 is the long-term average annual TN estimated for 
catchment J for each specific scenario that changes with land-use, nutrient inputs, and 
management practices. Once the average component of the speciation response (𝑃𝑃𝑅𝑅����𝑗𝑗=𝐽𝐽) is varied 
for a given land-use or management scenario, it is assumed that the average watershed response 
does not change across years, and interannual variability is primarily due to hydrology, even when 
land-use and/or management may change within the simulation period. 

It is recognized that this empirical approach has some obvious limitations, such as, among others: 
1) uncertainty associated with WRTDS load estimates, b) uncertainty related to the extrapolation 
of observed responses to inter-annual variability in hydrology to approximate the expected 
response to long-term, gradual changes in hydrology due to climate change, and 3) uncertainty in 
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the potential influence of multiple confounding factors at several spatial and temporal scales in 
determining N loads ultimately observed at the nontidal stations. Nonetheless, we think that this 
revised regression represents an improvement over the previous formulation especially in its 
ability to better differentiate between N speciation responses to large-scale spatial patterns vs. 
more local variability in hydrology.  

 
Figure 4-20: Same regression as in Figure 4-18 but here the y-axis represents the NO3/TN ratio rather than the NO3 load per acre. 
Just like in Figure 4-18, black circles represent the long-term average annual TN and NO3 loads estimated at each nontidal station. 

 
Figure 4-21: Example of inter-annual variability in the NO3/TN ratio as a function of annual TN load at individual nontidal stations. 
Annual NO3 and TN loads for three exemplary stations are highlighted with different colors in the main figure, while the three 
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smaller panels to the right show the same data but with the y-axis representing the NO3/TN ratio rather than the NO3 load. The 
dark blue line represents the Phase 6 regression also shown in Figure 4-18 and Figure 4-20. 

 

Table 4-10: Posterior parameter means and standard deviations 

Parameter Mean SD 
a0 -3.27 1.01 
a1 3.15 0.11 
b0 3.57 1.51 
b1 3.26 0.15 
σ 0.33 0.01 

σα 2.83 0.14 
σβ 2.78 0.21 

 

 

 
Figure 4-22: Comparison between the Phase 6 regression (dark blue line) and the overall average regression obtained through 
hierarchical modeling (red line in main figure). The smaller panels to the right compare the Phase 6 regression (dark blue) to 
station-specific hierarchical regressions (light blue, cyan and green) for three example stations. 

 



 
89 

Table 4-11: Examples of predicted changes in the NO3/TN ratio as a result of changes in TN load mainly driven by inter-annual 
variability in hydrology vs. other factors (e.g., land-use, management practices, etc.) at three USGS nontidal stations spanning a 
broad range of average annual TN loads. 

USGS Station ID 1487000 1488500 2039500 

USGS Station Name Nanticoke River 
near Bridgeville 

Marshyhope 
Creek near 
Adamsville 

Appomattox River 
at Farmville 

Land Use 46% agricultural; 
2% pasture; 10% 
developed; 42% 
natural/forested 

50% agricultural; 
2% pasture; 7% 
developed; 41% 
natural/forested 

7% agricultural; 
10% pasture; 5% 
developed; 78% 
natural/forested 

𝑻𝑻𝑻𝑻���� (lbs/acre) 20.02 11.83 1.97 

𝑻𝑻𝑵𝑵𝑵𝑵������/𝑻𝑻𝑻𝑻���� 0.834 0.780 0.289 

NO3/TN for 5% increase in TN 
due to hydrology 

0.831 0.774 0.289 

NO3/TN for 10% increase in TN 
due to hydrology 

0.828 0.771 0.288 

NO3/TN for 5% decrease in TN 
due to hydrology 

0.838 0.780 0.290 

NO3/TN for 10% decrease in TN 
due to hydrology 

0.841 0.783 0.290 

NO3/TN for 5% increase in TN 
due to non- hydrology factors 

0.838 0.784 0.309 

NO3/TN for 10% increase in TN 
due to non- hydrology factors 

0.842 0.790 0.329 

NO3/TN for 5% decrease in TN 
due to non- hydrology factors 

0.830 0.770 0.267 

NO3/TN for 10% decrease in TN 
due to non- hydrology factors 

0.825 0.762 0.244 

 

4.7.2 Groundwater Lag 

Groundwater lag times are an important part of the Phase 6 dynamic simulation model but are 
not simulated in the Phase 6 CAST.  CBP management scenarios are run without lag time and are 
meant to represent the long-term loading based on a static set of management practices.  Lag 
scenarios in the dynamic model are only used for calibration and for specific lag time studies.  
Given that the CBP 2019-2021 climate assessment is using the CBP management scenarios 
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methodology that excludes lag time, the change in lag time due to climate change will be ignored 
for the 2019 assessment. 

However, some discussion of the potential effects of lag time is helpful if the CBP would like to 
consider lag scenarios or the effects on calibration.  Groundwater systems are expected to be 
impacted by climate change.  Studies, summarized in Lall, et al. 2018, have found that climate 
change will have an effect on human uses of groundwater and also on the timing and amount of 
recharge.  Konikow, 2015, in a nationwide study, found long-term depletion in the coastal plain of 
the Chesapeake region. 

The equation found in figure 10-30 of the CAST documentation (CBP 2017) (reproduced here as 
Figure 4-23, left panel) establishes a relationship between groundwater age and the ratio of 
water table depth and recharge based on a MODFLOW model of the Potomac.  The relationship 
was used to estimate groundwater age for all non-coastal plain segments the in the Chesapeake 
Bay watershed in the Phase 6 dynamic model.  Using the equation from figure XXX, it is be 
possible to estimate the change in groundwater age from a climate-change induced change in 
recharge rate. Figure 4-23, right panel shows the changes in groundwater age based on a 1 inch 
per year recharge increase. 

 

In the coastal plain, figure 10-32 of the CAST documentation (reproduced here as Figure 4-24) 
found that recharge was a minor portion of the second principle component rather than a major 
influence. The weights for the 4 most important PCs are shown.  Lithological, physiographic, and 
geological attributes are the main determinant of groundwater age in the Chesapeake Coastal 
Plain above recharge rate. 

Figure 4-23: Left panel: Groundwater age as a function of the ratio between water table depth and recharge rate [Adapted from 
Sanford (2015)]. Right Panel: change in groundwater age from a 1 inch per year increase in recharge based on the relationship 
in the left panel 
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Figure 4-24: Left: Importance of the Principle components (PCs) in the statistical model for explaining the groundwater age in the 
Chesapeake Coastal Plain.  Right:  The weights of the watershed attributes in the principle components. 

Both of these analyses were aimed at estimating the spatial variability of groundwater lag times 
and are not necessarily representative of change in lag over time as climate changes.  The lack of 
consistency between the two approaches also causes some concern given that application of the 
methods may lead to a smaller change in the non-coastal plain regions based on the analysis 
method rather than real differences that may exist.   

4.7.3 Land to water and stream to river effects 

Figure 4-25 shows the structure of the time-averaged model for nutrients.  The processes 
represented correspond to separable scales and physical domains.  The output of the model is the 
amount of nitrogen or phosphorus delivered to tidal waters from a given land use or loading 
source in a land-river segment.  The structure is discussed in more depth in Section 1 of the Phase 
6 Watershed Model documentation. 
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The top line in Figure 4-25 (average loads, 
inputs, and sensitivities) represents the 
loads exported from a land use to a stream 
in a land segment taking into account local 
applications but not local watershed 
conditions.  Land Use Acres and BMP factors 
account for local extent of the land use and 
modifications of the loads due to installed 
management practices. 

The Phase 6 model accounts for the effect 
of landscape and riverine properties on load 
delivery by a series of factors which are 
applied after management is considered.  
Land to Water factors account for spatial 
differences in loads due to physical 
watershed characteristics.  Stream Delivery 
and River Delivery factors are applied to 
account for nutrient and sediment 
processes in waterways.  Streams are 
defined as having an average flow less than 

100 cfs with rivers being larger. 

Sections 4.4 and 4.5 of this document describe modeled and monitored responses of nitrogen 
and phosphorus, respectively to climate variables.  In the discussion of nitrogen response to 
climate change in Section 4.4, the literature cited refers to studies that are conducted at the 
watershed scale.  These studies include landscape delivery and the effects of small streams.  
Therefore, it would not be appropriate to apply an additional effect of climate change to the land-
to-water or stream-to-river factors for nitrogen.  Section 7 of the Phase 6 Watershed Model 
documentation describes an increasing nitrogen delivery with groundwater recharge and wetter 
soils which is consistent with the work cited in Section 4.4.  Riverine processes are simulated 
directly in HSPF as described in Section 10 of the Phase 6 Watershed Model documentation.  The 
effects of temperature on biological and chemical processes are simulated through temperature-
corrected dynamic modeling.  Stream scour is positively related to shear stress, which is in turn 
positively related to flow.  Table 4-12 summarizes the information on the simulation of landscape 
process adjustment to climate change for nitrogen. 

 

Table 4-12: Climate effects on nitrogen transport 

Land use category Land to water Stream delivery River delivery 
Agricultural Captured in literature review and analysis Simulated in HSPF 
Developed Captured in literature review and analysis Simulated in HSPF 
Natural Captured in literature review and analysis Simulated in HSPF 

 

Figure 4-25: Phase 6 Watershed Model Structure 
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As described in 4.5.1, change in agricultural and natural phosphorus loads due to climate change 
rest on the modeled response to the stormflow and sediment washoff.  The responses to 
stormflow and sediment washoff were developed in the Phase 6 Watershed Model to account for 
spatial differences but can be applied to climate since there were initially developed through 
modeling of changes in these variables through time.  Changes in these values due to climate 
change will be incorporated in the calculation of loads and will therefore account for climate-
related changes in the land to water delivery.  The climate effects on phosphorus delivery on 
developed in Section 4.5.1.1 similarly accounts for changes in phosphorus delivery due to changes 
in delivery through the landscape.   

The analysis of climate effects on phosphorus transport in agricultural and natural areas includes 
only landscape processes and not stream processes.  Similarly, the analysis of change in 
developed land rests on end-of-pipe values and would not include stream delivery effects.  The 
Phase 6 simulation includes a direct simulation of rivers that will respond to higher flows with 
higher amounts of scour, however this effect is not simulated in smaller rivers.  Currently the CBP 
has no way to address climate change effects on streams for phosphorus.  It is still the case 
however, that streams will be simulated as increasing or decreasing their bed and bank loads 
relative to the change in upstream load for any scenario.  Table 4-13 summarizes the information 
on the simulation of landscape process adjustment to climate change for phosphorus. 

Table 4-13:  Climate effects on phosphorus transport 

Land use category Land to water Stream delivery River delivery 
Agricultural Already represented in 

sensitivities 
Not adjusted for 
climate 

Simulated in HSPF 

Developed Added based on 
literature and analysis 

Not adjusted for 
climate 

Simulated in HSPF 

Natural Already represented in 
sensitivities 

Not adjusted for 
climate 

Simulated in HSPF 

 

4.8 Climate Scenario Model Results 

Phase 6 Watershed Model was used for assessing the impact of climate change on the delivery of flow, 
nutrients, and sediment.  In this assessment, Watershed Implementation Plan Phase 2 (WIP2) Level of 
Effort scenario was used as the reference scenario for quantifying the impacts of climate change.  The 
estimated change in delivery presented in this section represent anticipated change in watershed 
response between the 1991-2000 climatology and a future year. Therefore, in reference to 1991-2000, 
specific scenarios consist of climatic change over a 30-year period for the 2025 scenario and 55 years for 
the 2050 scenario.  

Table 4-14: List of climate change scenarios run and corresponding inputs. 

Year No. Scenario 
description 

Rainfall Volume to 
Intensity 

Temperature CO2 

Ye
ar

 
20

25
 01 Rainfall 

sensitivity 
scenario 

Extrapolation of 
88-year historic 
trend 

Equally between 
intensity deciles 

N/A N/A 
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02 Rainfall 
sensitivity 
scenario 

Extrapolation of 
88-year historic 
trend 

Based on 
observed trends 

N/A N/A 

03 Temperature 
sensitivity 
scenario 

N/A N/A RCP 4.5 31-member 
ensemble median 
(P50) 

N/A 

04 CO2 level 
sensitivity 
scenario 

N/A N/A N/A Change 
from 363 to 
427 ppm 

05 Integrated 
scenario 

Extrapolation of 
88-year historic 
trend 

Based on 
observed trends 

RCP 4.5 31-member 
ensemble median 
(P50) 

Change 
from 363 to 
427 ppm 

06 Integrated 
scenario 

Extrapolation of 
88-year historic 
trend 

Based on 
observed trends 

RCP 4.5 31-member 
ensemble median 
(P50) – Hamon 
Method 

Change 
from 363 to 
427 ppm 

07 Integrated 
scenario 
uncertainty 

Extrapolation of 
88-year historic 
trend 

Based on 
observed trends 

RCP 4.5 10 percentile 
bound of 31-member 
ensemble (P10)  

Change 
from 363 to 
427 ppm 

08 Integrated 
scenario 
uncertainty 

Extrapolation of 
88-year historic 
trend 

Based on 
observed trends 

RCP 4.5 90 percentile 
bound of 31-member 
ensemble (P90)  

Change 
from 363 to 
427 ppm 

Ye
ar

 2
05

0 

09 Rainfall 
sensitivity 
scenario 

31-member 
ensemble 
median (P50) of 
RCP 4.5 

Equally between 
intensity deciles 

N/A N/A 

10 Rainfall 
sensitivity 
scenario 

RCP 4.5 31-
member 
ensemble 
median (P50) 

Based on 
observed trends 

N/A N/A 

11 Temperature 
sensitivity 
scenario 

N/A N/A RCP 4.5 31-member 
ensemble median 
(P50) 

N/A 

12 CO2 level 
sensitivity 
scenario 

N/A N/A N/A Change 
from 363 to 
487 ppm 

13 Integrated 
scenario 

RCP 4.5 31-
member 
ensemble 
median (P50) 

Based on 
observed trends 

RCP 4.5 31-member 
ensemble median 
(P50) 

Change 
from 363 to 
427 ppm 

14 Integrated 
scenario 

RCP 4.5 31-
member 
ensemble 
median (P50) 

Based on 
observed trends 

RCP 4.5 31-member 
ensemble median 
(P50) – Hamon 
Method 

Change 
from 363 to 
427 ppm 

15 Integrated 
scenario 
uncertainty 

RCP 4.5 10 
percentile bound 
of 31-member 
ensemble (P10)  

Based on 
observed trends 

RCP 4.5 10 percentile 
bound of 31-member 
ensemble (P10)  

Change 
from 363 to 
427 ppm 

16 Integrated 
scenario 
uncertainty 

RCP 4.5 90 
percentile bound 

Based on 
observed trends 

RCP 4.5 90 percentile 
bound of 31-member 
ensemble (P10)  

Change 
from 363 to 
427 ppm 
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of 31-member 
ensemble (P10)  

 

4.8.1 Effect of rainfall intensity 

As described in Section 2.1.5, two different approaches for the changes in rainfall intensity were evaluated 
in this assessment.  In the first approach, the increase in rainfall volume was equally divided amongst the 
intensity deciles.  Whereas in the second approach a large portion of increase was preferentially applied to 
the rainfall events in the highest decile.  For the preferential approach, the proportion for dividing rainfall 
volume into the intensity deciles were based on Groisman et al. (2004) as shown in the Figure 2-7 that 
uses observed rainfall data for assessing the change. The latter will result in larger increase in intensity for 
the higher intensity events.  Figure 4-26 shows the simulated changes flow, nitrogen, phosphorus and 
sediment deliveries.  The results for both 2025 and 2050 are shown.  As anticipated, for the same change 
in rainfall volume the simulated flow was slightly higher for the preferential approach, where rainfall 
volume was divided based on observed intensity trends.  Although the differences in simulated flow are 
almost similar, the resulting changes in nitrogen, phosphorus, and sediment are significant.  That response 
is due to higher delivery of particulate matter with higher intensity events.  For the rest of the assessment 
the approach of increasing rainfall the most in the highest deciles for dividing rainfall volume into rainfall 
events was used because it is based on observations.  It was also corroborated by the analysis of some of 
the daily climate projection dataset obtained using Bias Correction Constructed Analogues for the 
Chesapeake Bay region. 

  
Figure 4-26: Changes in flow, nitrogen, phosphorus, and sediment are shown for the two different methods applied to projected 
changes in rainfall volume for the year 2025 and 2050. 
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4.8.2 Climate Change Sensitivity Scenarios 

The impact of three climate change drivers incorporated in this climate change assessment were 
separately analyzed as sensitivity scenarios.  The objective of these sensitivity scenarios was to develop 
better understanding of the watershed response by quantify the relative impact of these climatic drivers 
on the simulated changes flow, nutrients, and sediment transport.  Changes in the delivery of flow, 
nitrogen, phosphorus, and sediment to the Chesapeake Bay are shown in the Figure 4-27.  The results 
show that for both year 2025 and 2050 the changes in rainfall was the major driver of changes resulting in 
increased delivery of nutrients and sediment.  Temperature and corresponding potential 
evapotranspiration resulted in a decreased delivery of loads as anticipated and were a close second in 
terms of impact.  The impact of elevated CO2 levels was relatively minor increases in delivery. 

 
Figure 4-27: Relative impact of projected changes in rainfall, temperature, and CO2 levels were analyzed for the year 2025 and 
2050. The changes in the delivery of flow, nutrients, and sediment are shown. 

 

4.8.3 Integrated 2025 and 2050 Scenarios 

With the integrated climate change scenarios, the combined impact of rainfall, temperature, and CO2 level 
were simulated. The integrated scenarios for 2025 and 2050 resulted in increased delivery of flow, 
nitrogen, phosphorus, and sediment. That is consistent with responses seen for both 2025 and 2050 
climate change sensitivity scenarios in the previous section, where the rainfall change dominated the 
watershed response as compared to changes in temperature and CO2 level. For year 2025, delivery of flow 
increased by 2.3 percent, nitrogen by 2.4 percent, phosphorus by 3.1 percent, and sediment by 3.3 
percent (Figure 4-28). For year 2050, delivery of flow increased by 6.0 percent, nitrogen by 8.3 percent, 
phosphorus by 15.3 percent, and sediment by 16.2 percent (Figure 4-28).  
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Figure 4-28: Simulated changes in the delivery of flow, nutrients, and sediment to the Chesapeake Bay for year 2025 and 2050 
climate change scenarios are shown. For year 2025, rainfall projection from 88-year trends analysis, and temperature using RCP 
4.5 31-member ensemble median were used. For year 2050, both rainfall and temperature using RCP 4.5 31-member ensemble 
median were used. 

 

4.8.4 Changes for the Major Basins 

Figure 4-29 shows simulated responses for the major river basins in the watershed.  It was shown 
in the previous section that the increase in watershed delivery for flow, nutrients, and sediment 
for 2050 was higher than 2025.  That behavior is also seen in the simulated responses for the 
major basins.  However, it is noted the model simulation reveal some interesting behavioral 
differences in the river basin response.  For example, the James River basin (JAM) had the lowest 
percent increase in flow in the 2025 climate changes assessment, but for 2050 it has the largest 
percent increase in flow.  Similarly, percent increase in nitrogen delivery was lowest for James 
(JAM) in 2025, but it has 3rd largest percent increase for 2050.  Similar behavior is seen in 
phosphorus and sediment response.  Such responses are the result of interplay between 
estimated changes in rainfall (volume and intensity) and temperature that are simulated by the 
Phase 6 Watershed Model.  For example, James River basin had some of the smallest increases in 
rainfall volume for 2025, but for 2050 it had higher increases in rainfall as compared to rest of the 
watershed.  Temperature increase on the other hand was higher for 2050 but had a similar spatial 
distribution.  As a result, large increase rainfall volume for 2050 in James resulted in a net 
increase in flow. 
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Figure 4-29: Average annual change in flow, nitrogen, phosphorus, and sediment for the major river basins – Eastern Shore (EAS), 
Potomac (POT), Western Shore (WES), Patuxent (PAT), Susquehanna (SUS), Rappahannock (RAP), James (JAM), York (YOR) are 
shown.  The lines show the change for the entire watershed. 

The differences in flow, nutrient, and sediment response to climate change between basins is 
substantial reflecting regional differences in precipitation change and PET change shown in Figure 
2-15 and Figure 2-18.  It is difficult to visually reconcile Figure 2-15 and Figure 2-18 with Figure 
4-29 and so an analysis was performed to investigate the relative strength of the precipitation 
effect and the PET effect and to validate the model response to expected changes.  Figure 4-30 
shows the results of a multiple linear regression predicting percent change in flow for each land 
segment using percent change in precipitation and percent change in PET as predictors.  The 
equation in the caption shows that flow increases as precipitation increases and that flow 
increases as PET decreases, which are both expected results.  Precipitation is a considerably 
stronger predictor of flow with higher absolute coefficient.  The R2 reported in the caption and 
visual inspection of the figure indicate that the model fit is good. 
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Figure 4-30: Multiple linear regression results plotted against model results by land segment. Percent flow change = 1.87 x Percent 
rainfall change –1.04 x Percent PET change.  The regression model returned a R2 of 0.95 

  

 

4.8.5 Seasonal Changes for the Watershed 
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Figure 4-31: Simulated changes in flow, nutrients, and sediment are shown for year 2025 are shown.  Box and whiskers show 
interannual variability, whereas the solid lines show average annual change. 

 

 
Figure 4-32: Simulated changes in flow, nutrients, and sediment are shown for year 2050 are shown.  Box and whiskers show 
interannual variability, whereas the solid lines show average annual change. 

 

 

4.8.6 Uncertainty Quantification 

There are a number of uncertainties involved in the assessment of climate change impacts on hydrology 
and water quality.  Some of those are (a) uncertainties in the global circulation models, (b) assumptions for 
the initial conditions in the GCMs and well documented issues of “model drift”, (c) the downscaling 
methods for climate projections, (d) the time-disaggregation of monthly projections to daily or hourly 
time-steps for use with the watershed model simulation, (e) the methods for the estimation of potential 
evapotranspiration, and (f) the parameter uncertainty of the Phase 6 Watershed Model calibration.  The 
technical aspects of the implementations are based on the recommendations of the Chesapeake Bay 
Program’s Modeling Workgroup, the Climate Resiliency Workgroup, and the Scientific and Technical 
Advisory Committee workshop (Johnson et al. 2016). 

The uncertainties arising from the climate change inputs used in the assessment were investigated.  The 
31 downscaled projections for a given period often have differences in the future projections. In the 
ensemble analysis, all of the models and the corresponding downscaled data were given same weight, 
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equivalent to an assumption of equal likelihood for any one of them to represent the likely future.  The 
central tendency of the samples was characterized using the ensemble-median values of the dataset.  To 
quantify the uncertainty 10th percentile and 90th percentile bounds of the projections were used. 

The setup for uncertainty assessments for 2025 and 2050 were made slightly differently.  For year 2025, 
since the projections for the rainfall was derived from the extrapolation of the long-term observations, 
only uncertainties due to temperature projections were assessed. For year 2050 scenario, uncertainties in 
both rainfall and temperature projections were used.  And in this case, there are several possible ways the 
combination of rainfall and temperature can be used in the uncertainty assessment.  The combinations for 
projected changes as “high precipitation – high temperature” and “low precipitation – low temperature” 
were selected to capture a conservative range for the uncertainty.  It is acknowledged that this 
combination does not capture full range of possible impacts. 

As shown in Table 4-15 the range of uncertainties around the 2025 are narrower than 2050.  The wider 
uncertainty for the year 2050 is due to higher variability in the rainfall projections (Figure 4-33), as 
compared to 2025 where only variability in temperature projections were considered.  The 2025 
uncertainty assessment suggests change over average 10 year can be anywhere for – flow between no 
change to 4.8percent increase, nitrogen between 0.6 percent decrease to 6.9 percent increase, 
phosphorus between 1.6 percent decrease and 11.6 increase, and sediment between 1.8 percent decrease 
and 13.1 percent increase.  The 2050 uncertainty assessment suggests change over average 10 year can be 
anywhere for – flow between no change to 4.8 percent increase, nitrogen between 0.6 percent decrease 
to 6.9 percent increase, phosphorus between 1.6 percent decrease and 11.6 increase, and sediment 
between 1.8 percent decrease and 13.1 percent increase. 

 

Table 4-15: Uncertainty estimates for the climate change scenarios for the year 2025 and 2050. Change shown are difference in 
average annual delivery over the 10-year period. 
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Figure 4-33: Summary of annual RCP4.5 annual rainfall and temperature change for the Chesapeake Bay watershed are shown.  
Then range for 10th percentile (P10), ensemble median (P50), and 90th percentile (P90) are shown.  The estimated change in rainfall 
volume based on the extrapolation of long-term trends are also shown (with marker symbol x). 

The method used for estimating the potential evapotranspiration is an important source of 
uncertainty.  In this assessment two methods were included for quantifying its impact on the 
delivery of flow, nutrients and sediment.  As discussed earlier, for the same delta increase in 
temperature, Hamon methods estimates higher changes in potential evapotranspiration as 
compared to Hargreaves Samani.  As anticipated higher increase in potential evapotranspiration 
results in relatively drier conditions and lower delivery of flow and sediment (Figure 4-34). 
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Figure 4-34: Uncertainty due to selection method for estimating potential evapotranspiration for 2025 and 2050 are shown. The 
uncertainties get higher with increase in temperature.  

5 Estuarine Water Quality and Sediment Transport Model Results 

The guidance for increasing levels of regional sea level rise based upon global tide gauge rates 
and regional land subsidence rates came from the CRWG.  Specifically, the CRWG recommended 
that sea level rise projections for 2025 be based on long-term observations at Sewells Point, VA 
(0.17 m) and that a range be used for 2050 (0.3 - 0.8 m) be applied in the WQSTM.  The 
approximate median of the 2050 range (0.5 m) was used for initial simulations.  Temperatures for 
riverine inflow were provided by the Phase 6 Watershed Model.  Air temperatures were 
consistent with the Watershed Model for each scenario.  Changes in temperatures for the open 
boundary at the Bay mouth were estimated as a function to changes in air temperature.  Tidal 
wetland loss was estimated by the GIS analysis of data from Sea Level Affecting Marshes Model 
(SLAMM). 

 

5.1 Inputs 

5.1.1 Wetland losses and gains 

Tidal wetlands have a complex effect on dissolved oxygen in tidal waters.  Wetlands attenuate 
nutrients, but also cyclically release organics which can depress local dissolved oxygen.  As 
described in Cerco and Noel, 2019, wetlands area and change in wetland area were calculated 
using the Sea Level Affecting Marshes Model (SLAMM) (WPC 2018).  The SLAMM results were 
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initially generated for a study of the effects of sea level rise on coastal habitats in the Chesapeake 
Bay region (Glick et al. 2008).  Geographic information system (GIS) files of wetlands areas 
adjoining the Chesapeake Bay under base conditions and sea level rise scenarios from Glick et al. 
2008 are publicly available and were processed and provided to the CBP by Dr. Lora Harris of the 
University of Maryland Center for Environmental Science through a master’s thesis effort (Bryan 
2014).  Bryan 2014 extracted the tidal wetland extent for 1996 base conditions and sea level rise 
conditions from the complete SLAMM results as part of a study of nitrogen removal by 
Chesapeake Bay tidal wetlands.  SLAMM considers the effects of sea level rise only and does not 
have components that simulates the changes in wetlands that may be due to changes in 
temperature or salinity.  Developed land, defined as National Land Cover Data developed land 
with greater than 25% impervious, had some modeled resistance to wetland transgression.  
SLAMM results may be superseded by updated wetlands modeling being undertaken by the USGS 
over the next few years. 

As discussed in Section 5.1.3 sea 
surface level is predicted to rise by 
22cm by 2025, 31 cm by 2035, 42 
cm by 2045 and 53 cm by 2050 
compared to 1995.  These sea 
level rise magnitudes were used 
to project tidal wetland acreage 
for future scenarios. The total 
baywide wetland acreage for the 
1995 base and each scenario is 
shown in (Figure 5-1).  Based on 
the 1996 condition which was 
used in the calibration run, wetland 
acreage will increase about 2% by 
2025, which is equivalent to an 
increase of about 3000 hectares in the 
entire Bay. Wetland acreage will 
decrease beyond 2025, by 3% in 2035 with 31 cm sea level rise, by 16% in 2045 with 42 cm sea 
level rise and by as much as 34% in 2055 with 53 cm sea level rise, which is equivalent to a 
decrease of 45,000 hectares in the entire Bay by 2055.  The SLAMM scenarios were for different 
levels of sea level rise by the year 2100 and might underestimate wetland loss from more rapid 
sea level rise. 

When analyzed by basin, half of the total wetland acreage is located in the Maryland Lower 
Eastern Shore basin, which is south of the Little Choptank River, extending to the Maryland state 
line, including the Honga River, the Nanticoke River, Fishing Bay, the Wicomico River, Tangier 

Figure 5-1: Projection of tidal wetland acreage in the Bay under climate change 
condition by SLAMM (Sea Level Affecting Marsh Model). 1996 is the base 
scenario; SLR_22cm: 22 cm sea level rise by 2025; SLR_31cm: 31 cm sea level 
rise by 2035; SLR_42cm: 42 cm sea level rise by 2045; SLR_53cm: 53 cm sea 
level rise by 2055. 
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Sound, the Manokin River, the 
Big Annemessex River and the 
Pocomoke River.  This basin is 
one of the most vulnerable to 
sea level rise, with 50% of the 
tidal wetland projected to be 
lost by 2055, amounting to 
31,000 hectares and 69% of 
tidal wetland loss in the entire 
Bay.  Maryland Western Shore, 
Rappahannock, and Virginia 
Eastern Shore are also 
vulnerable to sea level rise with 
tidal wetland losses amounting 
to over 50%. On the other hand, 
there is projected to be a gain of 
tidal wetland coverage under 
climate change conditions in the 
Maryland Middle Eastern Shore Basin (essentially the Choptank and Little Choptank basins), with 
an increase of 55% (4,000 hectares) by 2055. The James Basin is initially projected to see a 
significant increase of 21% in 2035, followed by losses so that the projection for 2055 is only 5% 
greater than 1996.  

5.1.2 Wind effects 

The effects of wind on DO aeration and distribution in the Chesapeake Bay are a result of both 
wind attributes and Bay properties.  Variations in wind can alter vertical mixing as well as both 
along-channel and cross-channel circulation (Scully et al. 2005).  Changes not only in wind speed 
but also in wind direction can modify DO, and these two attributes have the potential to modify 
DO in different ways (Scully, 2010).  It has also been found, through a series of simulations using 
previous versions of the CBP partnership’s WQSTM, that the bathymetry of the Bay plays a 
significant role in modulating the effect of wind on DO concentration (Wang et al. 2016a).  Given 
the complexity and variability of the Bay’s geometry, the potential effects of wind will differ from 
segment to segment as a function of the local geometry.  

Wind speed is the primary metric for wind to influence mixing, circulation and ultimately DO in 
the Bay.  Regardless of which direction it is blowing and how favorable the bathymetry is towards 
contributing to the wind effect, a slow wind speed, e.g., a few centimeters per second, cannot 
have a significant effect on the physics and biogeochemistry of the Bay.  Wang et al. (2016b) 
reported sensitivity analyses of hypoxic volume to changes in wind speed and found that anoxic 
volume (DO < 0.2 mg/l) has a very minor response to wind forcing of 2 meters per second for 2 
days (Figure 5-3).  Only wind speeds greater than 4 meters per second have substantial influence 
on DO in the bottom of the Bay.  Note that wind events of 2 days duration are relatively rare, and 
shorter wind durations will have less impact on the Bay. 

Figure 5-2: Projection of tidal wetland acreage in each basin under climate change 
condition by SLAMM. 1996 is the base scenario; SLR_22cm: 22 cm sea level rise by 
2025; SLR_31cm: 31 cm sea level rise by 2035; SLR_42cm: 42 cm sea level rise by 
2045; SLR_53cm: 53 cm sea level rise by 2055. 
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Figure 5-3: Peak anoxia volume reduction in the mainstem Bay, from a no-wind condition to 2-days duration of wind, from the four 
cardinal directions and at five speeds. 

Maria Herrmann of Penn State University has assessed wind speeds under future modeled 
climate change conditions within the framework of the Chesapeake Hypoxia Analysis and 

Modeling Program (CHAMP). To generate projections at the Bay scale, the analysis used the 
downscaling method of MACA, Multivariate Adaptive Constructed Analogs, which is a statistical 
method for downscaling Global Climate Model (GCM) simulation results from their native coarse 
resolution to a higher spatial resolution. Twenty GCMs were included in the downscaling analysis, 
including 2 from the NOAA Geophysical Fluid Dynamics Laboratory and 1 from the USA National 
Center for Atmospheric Research (Table 5-1). 

 

Table 5-1: Global Climate Models (GCMs) included in the downscaling analysis of wind speed in Chesapeake Bay (Maria 
Herrmann, personal communication, April 16, 2019). 
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The downscaling analysis was conducted on a monthly basis (Figure 5-4).  Winter months from 
January through March show greater variability, with more outliers than in the summer months 
from July through September.  In particular changes in July and August wind speed are very small.  
In other months, the median changes in wind speed, under projected climate change conditions, 
are mostly a few centimeters per second.  

 

 
Figure 5-4: Results of wind speed downscaling analysis from 20 Global Climate Change Models (GCMs) to the Chesapeake Bay local 
scale for the year 2050 using the Multivariate Adaptive Constructed Analogs (MACA) method (Maria Herrmann, personal 
communication, April 16, 2019) 

As mentioned above, modeling sensitivity analysis show that wind speeds below 2 meters per 
second have a small influence on anoxia volume in the Bay.  Significant change in anoxia volume 
requires wind forcing greater than 4 meters per second.  Based on these sensitivity results using 
the Chesapeake Bay partnership model, wind speed changes under future climate conditions, up 
to the year 2050, are approximately 2 orders of magnitude lower than what is needed to have a 
significant impact on bottom DO in the Bay.  Given this large difference, it is unlikely that the 
Chesapeake Bay partnership model will show significant water quality effects of weak changes in 
wind speed.  Additionally, the uncertainties of the change in wind speed are greater than the 
mean during the summer months.  Consequently, further assessment of the climate effects on 
wind in our assessment of climate change impact on water quality in the Bay is not being 
pursued. 

5.1.3 Sea level rise 

Sea level rise is a major element in the climate change array of factors affecting water quality and 
ecosystem function in the Bay.  Sea level rise can alter the gravitational circulation, stratification, 
saltwater intrusion, and DO advection fluxes.  Robust projection of the magnitude of sea level rise 
contributes to the correctness and reliability of water quality assessment under future climate 
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change conditions.  Two methods of sea level rise projection for the Bay area were assessed: The 
quadratic function method and the probabilistic projection method.  

Boon and Mitchel (2015) fitted a quadratic function to tidal gauge data and successfully projected 
sea level rise magnitude up to 2055 at a large number of North America tidal gauge sites. The 
quadratic function is shown in Equation 5-1.  Readers are referred to Boon and Mitchel (2015) for 
detailed description of the method. 

Equation 5-1: Quadratic sea level rise equation 

ℎ = 𝛽𝛽0+𝛽𝛽1𝑡𝑡 +
1
2
𝛽𝛽2𝑡𝑡2 + 𝜀𝜀 

where: 
h = sea surface level 
t = time in years relative to the reference point 
β0 = intercept, i.e. the sea surface level at the reference point 
β1 = rate of sea level rise (m‧yr-1) 
β2 = acceleration rate of sea level rise (m‧yr-2) 
ε = error of the prediction or the residual between the quadratic function projection and the 
observation data. 

The tidal gauge site of Sewells Point, Norfolk, VA is located at the entrance of the Chesapeake 
Bay.  The Climate Resiliency Workgroup recommended using data at this site to drive the 
estuarine partnership model for the assessment of climate change impact on water quality in the 
Bay.  Sea surface level data over 50 years from 1969 to the present are available, which provides 
a sound basis for model fitting and projection (Figure 5.1.3.1).  With data from 2018 included and 
1992 as the reference point when the sea surface level is assumed at 0, the fitted sea level rise 
rate β1 is 5.2 mm‧yr-1 and the acceleration rate β2 is 0.12 mm‧yr-2.  Note that the sea level rise 
rate at Sewells Point is more than double the global ocean surface level rise of about 2 mm‧yr-1.  
A linear function fitting is comparable with the quadratic function with a coefficient of 
determination R2 0.51 versus 0.52 of the quadratic function.  However, the linear function does 
not take the acceleration of sea level rise into account.  It can be seen in Figure 5-5 that the 
residuals of the linear function are consistently positive at the starting and ending periods and 
more often negative in the central period of the data, indicating that the linear function cannot 
adequately predict sea level rise for a long period of time within which the acceleration of sea 
level rise is significant.  No trend in the distribution of the residuals of the quadratic function 
prediction (Figure 5-6) can be determined by inspection over the 50 years of data.  The ability of 
the quadratic function in predicting the acceleration of sea level rise make it appropriate to 
predict sea level rise into the near future. 
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The probabilistic method, known as the K14 method (Kopp et al. 2014), combines the IPCC 
projection of global seal level rise based on projections from GCMs with local tidal gauge data 
through a Gaussian process model for prediction at the local scale (Figure 5-7).  Glacier and ice 
cap (GIC), ice sheet melt, oceanographic processes, local land water storage and local non-
climatic background are all taken into account for sea level rise projection at local tidal gauge 
sites. Detailed information can be found in the original reference (Kopp et al. 2014).  

Figure 5-5: Quadratic function fitting and projection at Sewells Point, Norfolk, VA. The red solid line is the fitted 
quadratic function, the dashed lines are the 95% confidence interval and the black line is the fitted linear 
function as a comparison.  (modified from Boon and Mitchel, 
https://www.vims.edu/research/products/slrc/localities/nova/index.php). 

Figure 5-6: Residuals between quadratic method and observations and Sewell's Point, VA 
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Figure 5-7: Probabilistic projection of future sea surface level at tide-gauge sites Sewells Point (Kopp et al. 2014, Boesch et al. 
2018). BA13: Bamber and Aspinall [2013]. GIC: glacier and ice cap. SMB: surface mass balance. 

The two projections at the Sewells Point are quite similar (Figure 5-8, left panel).  Using 1995 as 
the reference point, the central year of the standard hydrology period used in the Chesapeake 
Bay Program, sea surface level will rise 0.22 m by 2025 based on the Quadratic Function 
projection and by 0.23 m based on the K14 projection, with a difference of 4.5%.  The difference 
between the two methods are all within 5% up to 2055: 0.31 m versus 0.32 m by 2035, 0.42 m 
versus 0.41 m by 2045, 0.48 m versus 0.46m by 2050, and 0.54 m versus 0.52 m by 2055, 
respectively.  It can be seen that the Quadratic Function projection is slightly lower than the K14 
projection till 2035 and slightly higher after.  Based on the recommendation of the Climate 
Resiliency Workgroup, the CBP will use the average of the two methods for the analysis of climate 
change impacts on water quality in the Bay (Figure 5-8, right panel): 0.22 m for 2025, 0.31 m for 
2035, 0.42 m for 2045 and 0.53 m for 2055, respectively.  The sea level rise numbers for 2050 are 
displayed in Figure 5.1.3.4 to facilitate comparison with other applications, but the Bay Program 
does not plan to do an assessment for 2050, rather every decade from 2025 through 2055. 

 
Figure 5-8: Projection of sea level rise by 2025, 2035, 2045 and 2055 as compared to 1995 using the probabilistic method (K14) and 
the Quadratic Function (left panel) and the average between the two (right panel) which are the final numbers that the Climate 
Resiliency Working Group recommended to use for assessing climate change impact on water quality in the Bay. 

5.1.4 Temperature and Salinity at the Ocean Open Boundary 

The oceanic open boundary conditions represent an additional forcing of the CBP partnership 
model.  As with other model forcings, robust estimation of climatic changes at the ocean 
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boundary is important for producing a reliable assessment of projected water quality impacts in 
the Bay.  An assessment of historical changes in sea surface temperature and modeled air 
temperature changes provides a relationship between air and ocean temperatures that is then 
applied across seasons and depths at the ocean boundary.  The results of a modeling study 
relating salinity to sea level rise is applied do the ocean boundary. 

5.1.4.1 Observed Ocean Temperature Change 

Regional temperature changes are happening in the context of a global ocean that has been 
warming, as evidenced by global sea surface temperature (SST) increases of approximately 0.13 °F 
per decade from 1990 to 2015, which is equivalent to 0.072 ℃ increase per decade (Figure 5-9, 
left panel).  However, SST trends vary over space and time, and there is evidence that global 
warming has tended to accelerate in recent decades as compared to temperature changes in the 
early 20th century.  The National Oceanic and Atmospheric Administration (NOAA) conducted a 
comprehensive analysis of historical temperature trends for coastal waters of the United States, 
and the Northeast Continental Shelf ranging from Maine to Maryland constituted a part of the 
investigation (Dupigny-Giroux et al. 2018).  Results for this region showed that SST from 1982 to 
2016 increased by 0.6 °F per decade on average, which is equivalent to 0.33 ℃ increase per 
decade, more than 4 times the rate of the global SST increase (Figure 5-9, right panel). 

 

 

Thomas et al. (2017) conducted a similar historical trend analysis on the northeast continental 
shelf of the United States using SST data from 1982 to 2014, with a region extending from the 
Nova Scotian Shelf in the north to Cape Hatteras in the south.  The authors were able to analyze 
the data separately for each major basin: Nova Scotian Shelf, Gulf of Maine and the Mid-Atlantic 
Bight.  They found that SST has a faster pace of increase in the northern region than in the 
southern region.  Over the 33 years of analyzed data, SST increased approximately 0.6 ℃ per 
decade on the Nova Scotian Shelf, 0.4 ℃ in the Gulf of Maine and about 0.3 ℃ in the Mid-Atlantic 
Bight.  These numbers are in coherence with the NOAA analysis presented earlier, i.e., 0.33 ℃ per 
decade, while also fully including both the Gulf of Maine and the Mid-Atlantic Bight. The 
agreement between these two large-scale comprehensive analyses provides mutual support for 

Figure 5-9: Left Panel: Average global sea surface temperature from 1880 to 2015 (from U.S.EPA, 2016b).  Right Panel: Annual average sea surface 
temperature (SST) anomaly from the 1982–2011 average (plotted data and red line) over the period 1982–2016, on the Northeast Continental Shelf 
of USA (Dupigny-Giroux et al., 2018). 
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the findings, and consequently, these results provide a sound basis for our specification of 
temperature at the WQSTM’s ocean boundary in the CBP climate change assessment. 

These results provide a reliable reference for our determination of the Chesapeake Bay model 
ocean boundary condition.  Our simulation is based on the standard hydrology period from 1991 
to 2000, with 1995 being the central reference year, which is close to the central reference year 
of the NOAA investigation, which was 1996.  The first period for the climate change assessment is 
a three-decade span from 1995 to 2025.  Based on the NOAA trend analysis, SST will increase 1.0 
°C from 1995 to 2025.  The data in the NOAA analysis continued until 2016, which is only 9 years 
earlier than our target year.  As in the Phase 6 Watershed Model simulation, observational data 
are preferred over GCM projections for 2025, because this target year is considered to be the 
near future relative to the most recent available observations.  

5.1.4.2 Modeled air temperature change 

Heat flux forcing for the WQSTM is computed from air temperature observations at the U.S. 
Naval Air Station located at the Patuxent River mouth (38.28N; -76.40W). For climate change 
application, a downscaling analysis of 31 GCMs was carried out to county scale using the Bias 
Corrected and Spatially Disaggregated method (BCSD; See Table 2-1 and Section 2.1.3 for details).  
The Naval Air Station is located at the boundary between the Maryland counties of St. Mary’s and 
Calvert, and downscaled air temperature change for future climate conditions averaged between 
the two counties is used for the ICM forcing.  Figure 5-10 displays the monthly air temperature 
change from 1995 to projections for 2025, with an annual average change of 1.058 ℃.  To 
reproduce the surface water temperature change observed in the Mid-Atlantic Bight, the air 
temperature change was multiplied by a factor of 0.9 to produce the ocean boundary condition; 
this yielded a surface water temperature change of 0.95 ℃ over 30 years. This water temperature 
change at the ocean open boundary is the average between the two large scale analyses of 
historic data presented earlier (Dupigny-Giroux et al. 2018 and Thomas et al. 2017). 

 
Figure 5-10: Air temperature change from 1995 to 2025 projected from downscaling analysis of 31 GCMs to the St Mary’s and 
Calvert counties, with an annual average of 1.058 ℃ (data from climate models as described in Section 2.1) 
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5.1.4.3 Generation of the ocean boundary temperature 

Water temperature below the surface was modified in proportion to the ratio of water 
temperature at depth and the surface water temperature: 

 

Where 
Twater = water temperature 
Tsurface = surface water temperature 
∆Tair = air temperature change under climate change conditions from downscaled GCM ensemble 
projection, 
∆Twater = water temperature change at the ocean open boundary under climate change conditions. 

An example is given in Figure 5-11 for September 1, 1993.  Air temperature change from 1995 to 
2025 is 1.16 ℃ for September based on the downscaled GCM ensemble projection, leading to a 
change in surface water temperature of 1.04 ℃ (0.9*1.16 ℃).  The observed surface water 
temperature at the ocean boundary is 22.3 ℃ and the modified temperature for 2025 is 23.34 ℃ 
(22.3+1.04 ℃).  The observed bottom temperature is 21.3 ℃, which leads to a change in bottom 
water temperature of 0.996 ℃ (0.9*1.16*21.3/22.3 ℃) and a resulting modified bottom 
temperature for 2025 of 22.30 ℃.  

The advantage of linking water temperature change to air temperature change is that it facilitates 
the generation of projections for other climate change scenarios, i.e., 2035, 2045 and 2055, that 
the Bay Program is charged to evaluate.  Moreover, the acceleration of air temperature warming, 
which is included in the GCM simulations, propagates into the water column boundary condition 
values and is thus taken into account.  The same coefficient (0.9) between air and water 
temperature change will therefore be used for the above future periods of time. 

∆T
water

=0.9•∆T
air

 • T
water

/T
surface

 

Equation 5-2: Relationship between water temperature at depth and air temperature 
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Figure 5-11: Example of modified vertical temperature profile (orange line) from the calibration conditions (blue line) at the ocean 
open boundary in September 1, 1993 under 2025 climate change conditions. 

5.1.4.4 Salinity Changes at the Open Boundary 

Salinity at the Bay mouth where the simulation boundary is located can increase with sea level 
rise and changes in oceanic circulation.  Saba et al. (2016) conducted a high-resolution model 
projection (10 km, versus 100 km in IPCC GCMs; IPCC, 2013) under future climate change 
conditions for the Northwest Atlantic.  They reported salinity increases under future climate 
change conditions due to the retreat of the Labrador Current, the northerly shifting of the Gulf 
Stream, the weakening of the Atlantic Meridional Overturning Circulation (AMOC), and an 
increase of Warm Slope Water entering the Northwest Atlantic Shelf.  

Hong and Shen (2012) conducted a modeling analysis of sea level rise impact on salinity in the 
Chesapeake Bay (Figure 5.1.4.5).  In their analysis, the model domain extended offshore, 
therefore the simulated salinity change can provide guidance for our specification of salinity 
change at the CBP model’s open boundary.  At the entrance of the Bay where the WQSTM ocean 
open boundary is located, salinity increased approximately 0.4 psu with a 0.5 m sea level rise.  
Assuming a linear relationship between sea level rise and salinity change at the entrance of the 
Bay, as indicated by the previous study, specification of salinity change at the ocean open 
boundary can be determined as: 

Equation 5-3: Salinity changes as a function of sea level rise. 

∆𝑆𝑆 = 0.4∆𝜁𝜁/0.5 

where  
∆S = salinity change at the ocean open boundary, 
∆𝜁𝜁 = sea surface level rise (m). 

Based on the Climate Resiliency Working Group’s recommendation, sea surface level is projected 
to rise 0.22 m by 2025, 0.31 m by 2035, 0.42 m by 2045 and 0.53 m by 2055, which will lead to a 
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salinity increase at the ocean open boundary of 0.18, 0.25, 0.34 and 0.42 psu, respectively.  As 
shown in Figure 5-12, no significant stratification of salinity changes was projected at the 
boundary, and therefore a constant salinity change was specified over the entire water column.  

 
Figure 5-12: Longitudinal (x-axis) and depth (m; y-axis) distribution of projected salinity changes in Chesapeake Bay after a sea 
surface level rise of 0.5 m. A vertical red line indicates the entrance of the Bay where the ICM ocean open boundary is located, 
where the ICM ocean open boundary is located, where there is a 0.4 psu increase (from Hong and Shen, 2012) 

Before adding the salinity change, salinity was re-interpolated to the new, sea-level rise expanded 
grid based on the new depth of each layer (Figure 5-13) such that the base salinity at each depth 
remained the same even though the depth of the cell centroids had changed. 

 
Figure 5-13:  Interpolation of salinity to the new grid before adding the salinity change (∆S) at the ocean open boundary. 

 

5.1.5 Loads from flooding 

Researchers have begun to measure the nutrient loads from the drawback of floodwater 
inundation.  It is expected that climate change will make inundation events more frequent and 
more widespread, increasing the loads from this source.  Initial results from the Lafayette river 
indicate that a single event can equal the expected nutrient loads from a year’s worth or runoff, 
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according to news reports.  The work is currently unpublished and so there is not sufficient 
information available to estimate a load or how that may change due to climate change at this 
time.  However, it was requested by CBP partners to include this short section acknowledging 
flooding drawback loads in the anticipation that research will progress over the next several 
years. 

5.2 Growth and Respiration Curve Modification 

Water temperature increase is one of the projected effects of climate change on the ocean and 
coastal embayments, such as the Chesapeake Bay.  Increased phytoplankton production, which 
can be driven by eutrophication as well as higher temperatures, leads to greater amounts of 
organic material, oxygen demand, and ultimately hypoxia in the Bay.  As such, an adequate 
simulated response of phytoplankton growth and respiration to temperature increase is essential 
for a robust assessment of the climate change impact on water quality in the Bay. 

5.2.1 Growth Curve Modification 

The response of phytoplankton growth rate to temperature increase is usually expressed as the 
Q10 coefficient, which is the growth rate increase over a 10℃ temperature increase.  The value of 
this coefficient can differ from species to species and from region to region.  Lomas et al. (2002) 
carried out an extensive study of the temperature effect on phytoplankton growth rate and 
microbial processes in the Chesapeake Bay and found values of Q10 ranging from 1.7 to 3.4.  A 
Q10 of 2, which means that phytoplankton growth rate will double over 10 ℃ increase in water 
temperature, is commonly used in the literature and particularly in the modeling community 
(Eppley, 1972; Tian et al. 2014).  Irby et al. (2018) used a Q10 of 2.1 in their modeling study of 
potential climate change impacts in Chesapeake Bay.  

The CBP partnership’s estuarine water quality sediment transport model (WQSTM) was calibrated 
for the period 1991 to 2000, the standard hydrology period used in the Chesapeake Bay TMDL.  
The phytoplankton growth curves used in the calibration were appropriate for temperatures 
observed in the Bay during that period.  At the STAC workshop “Chesapeake Bay Program Climate 
Change Modeling 2.0” held on September 24-25, 2018, it was recommended to revise the 
temperature-related coefficients for phytoplankton growth and respiration to adequately reflect 
phytoplankton assemblage characteristics over the range of water temperatures expected in the 
Bay due to climate change. 

In the ICM model, the response of phytoplankton growth rate to temperature increase is 
formulated in Equation 5-4: 

Equation 5-4: Phytoplankton growth rate 

g(T)  = gmaxe-K1⋅(T - Topt)2   when T≤Topt  
          = gmaxe- K2⋅(Topt - T)2   when T>Topt 
 
Where: 
g(T) = growth rate as a function of temperature (g C (g chl)-1day-1) 
gmax = theoretical maximum growth rate (g C (g chl)-1day-1) 
T = temperature (℃)  
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Topt = optimal temperature for algal growth (℃) 
K1 = effect of temperature below Topt on growth (℃-2)  
K2 = effect of temperature above Topt on growth (℃-2) 

Parameter values are listed in Table 5.2.1.  There are three groups of phytoplankton in the model: 
cyanobacteria, diatoms, and green algae.  These terms represent integrated phytoplankton 
groups rather than phytoplankton species.  The cyanobacteria group represents fresh water 
species in the tidal fresh zone of the tributaries, diatoms represent transitional groups in the 
spring, and green algae represent all other species that succeed diatoms in the summer and fall.  
Initially, the optimal temperatures (Topt) was set to 29 ℃ for cyanobacteria and 25 ℃ for green 
algae, temperatures over which growth for these phytoplankton groups would decrease or 
remain static.  With these optimal temperature values, the model can underestimate the impact 
of climate change on phytoplankton production and ultimately dissolved oxygen.  

As recommended from the STAC workshop, the optimal temperatures for cyanobacteria and 
green algae are both revised to 37 ℃, a value that it is unlikely water temperature will reach even 
under climate change conditions (Table 5-2).  The optimal temperature for diatoms was kept the 
same as in the calibration run because it is a transitional group in spring and succeeded by green 
algae.  Diatoms are known to be a cold-water species, and theoretically it is poorly understood 
how they will respond to water temperature increases.  The optimal temperature for diatoms in 
the model only affects the timing of when the diatom group is succeeded by other species, and 
not the total primary production and ultimately oxygen demand, which is the purpose of our 
assessment.  

Once the optimal temperatures were revised, the theoretical maximum growth rate and the 
exponential coefficient were altered in such a way that the simulated growth rate is comparable 
with the original calibration during the growth season from 10 to 30 ℃ for cyanobacteria and 
from 10 to 25 ℃ for green algae (Figure 5-14).  Given the equation of phytoplankton growth with 
respect to temperature presented above, the simulated growth rate is not linear with 
temperature change and, as such, the simulated Q10 is not a constant. The simulated Q10 for 
green algae is 2.02 from 5 to 15 ℃ and 1.92 from 10 to 20 ℃.  This group is the dominant group in 
the main stem of the Bay and the robustness of its simulation is the most relevant to water 
quality simulation.  Cyanobacteria is treated as a warm species in the tidal fresh zone in the 
model with higher optimal temperature up to 29 ℃ in the calibration. The simulated Q10 after 
the revision is 2.02 from 20 to 30 ℃ and 2.5 from 15 to 25 ℃.  All these numbers show that the 
revised model has an adequate response of phytoplankton growth to temperature increase and 
thus is suitable for climate change simulation. 

Table 5-2: Coefficients of phytoplankton growth and respiration response to temperature increase. gmax: Theoretical maximum 
growth rate of phytoplankton (g C (g chl)-1day-1), Topt: Theoretical optimal temperature; K1: Exponential coefficient for 
phytoplankton growth increase with temperature increase below Topt, K2: Exponential coefficient for phytoplankton growth 
decrease with temperature increase above Topt, Kr: Exponential coefficient for phytoplankton respiration response to temperature 
increase (Carl Cerco, personal communication, March 29, 2019) 

Coefficient Cyanobacteria  Diatom  Green Algae  
 Calibration Revision Calibration Revision Calibration Revision 
gmax 200 250 300 300 450 600 
Topt (℃) 29 37 16 16 25 37 
K1 0.005 0.0022 0.0018 0.0018 0.0035 0.0013 
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K2 0.004 0.0 0.0022 0.002 0 0 
Kr 0.0322 0.069 0.0322 0.069 0.0322 0.069 

 

 

Figure 
5-14: . 

Phytoplankton growth curve in function of water temperature (Red line: Original calibration curve; Blue: Revised curve for climate 
change assessment; From Cerco and Noel, 2019) 

5.2.2 Respiration Curve Modification 

Base phytoplankton respiration is a complex formulation that varies spatially.  The temperature 
dependence of the respiration is represented in Equation 5-5: 

Equation 5-5: phytoplankton respiration multiplier 

𝑃𝑃(𝑃𝑃) = 𝑒𝑒𝑘𝑘𝑟𝑟(𝑇𝑇−𝑇𝑇0) 

where: 
f(T) = multiplier to the respiration rate (dimensionless), 
kr = exponential coefficient of response to temperature change (℃-1), 
T = temperature (℃), 
T0 = reference temperature at which respiration rate is equal to the base rate. 

In the calibration, kr was assigned a value of 0.0322, which leads to a Q10 of 1.38.  This is 
relatively low as compared to the values reported for the Chesapeake Bay and in the literature 
(Lomas et al. 2002).  For the climate change anlysis, kr was revised to 0.069, yielding a Q10 of 2, in 
coherence with the literature and what is reported in Chesapeake Bay.  The original and revised 
curves are shown in Figure 5-15. 
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Figure 5-15: Response of phytoplankton respiration rate to temperature increase. The orange line is the calibration and the blue 
line is the revised curve for climate change application. 

Analysis of model performance and expert opinion of the modeling workgroup found that the 
modification of the respiration was not warranted and so kr maintains a value of 0.0322. 

5.2.3 Test of Calibration 

The temperature parameter values were modified after the calibration for the climate change 
application.  A key question is whether these modifications significantly altered the calibration in 
such a way that simulation drifts away from the data.  To address this question, a simulation was 
conducted with all forcing files and parameter values the same as in the calibration except the 
modified temperature parameters as shown in Table 5-2, and its results were compared with the 
results of the original calibration run.  Mean difference (MD) and absolute mean difference 
(AMD), calculated as shown in Equation 5-6 were computed for both runs across the array of 
state variables used routinely during the calibration (Cerco and Noel, 2019):  

Equation 5-6: Calibration metrics for the WQSTM 

𝑆𝑆𝐷𝐷 =
∑ (𝑃𝑃𝑚𝑚 − 𝐶𝐶𝑚𝑚)𝑁𝑁
𝑚𝑚=1

𝑅𝑅
 

𝐿𝐿𝑆𝑆𝐷𝐷 =
∑ |𝑃𝑃𝑚𝑚 − 𝐶𝐶𝑚𝑚|𝑁𝑁
𝑚𝑚=1

𝑅𝑅
 

Where: 
P = prediction 
O = observation 
N = number of observations.  

Time-series data comparison and whisker box plots of bottom DO at the central station CB4.2C 
are given as an example in Figure 5-16, followed by AMD and MD plots for DO (Figure 5-17), 
chlorophyll (Figure 5-18), total nitrogen (TN) (Figure 5-19) and total phosphorus (TP) (Figure 
5-20).  On the time-series plot of bottom DO at CB4.2C, the two simulations are superimposed on 
each other (Figure 5-16 left panel).  Both simulations match well with the data in terms of 
magnitude, seasonal variation, and hypoxia events with DO < 2 mg/l during the summer season.  
Similarity between the two solutions dominates on the whisker plots in term of the median, the 
first and the fourth quartiles and even the extrema (Figure 5-16 right panel).  The new solution 
with modified temperature-related parameter values even show some slightly better results as 
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compared to the original calibration solution, with the simulated median closer to the data 
median, such as in 1991, 1994, and 1997. 

 
Figure 5-16: Bottom DO at the central Station CB4.2C in segment CB4MH (Base: Calibration run; Base_NT: Simulation with revised 
parameter values for the phytoplankton growth function and respiration rate with temperature). 

In terms of AMD and MD of DO in the entire water column, the new solution with modified 
temperature parameter values generated slightly lower AMD in the main stem than the original 
calibration, but slightly higher in the tributaries (Figure 5-17, left panel).  Nonetheless, all 
differences are within 5% of the original solution.  The MD plot shows that both solutions slightly 
underestimate DO in the Eastern Shore and overestimate DO in the tributaries on the western 
shore, with the best solution for the main stem of the Bay resulting in the smallest MD over all 
the tributaries. 

 
Figure 5-17: Absolute mean difference AMD (left panel) and mean difference MD (right panel) between simulation and data of DO 
in the major tributaries and the main stem of the Bay (Base: Calibration run; Base_NT: Simulation with revised parameter values 
for the phytoplankton growth and respiration functions with temperature). 

The chlorophyll results are quite similar between the two solutions in the main stem (Figure 
5-18), and the AMD of the new solution with the modified temperature parameter values is 
slightly higher than the original calibration solution in most of the tributaries.  The differences are 
mostly below 15% of the original solution.  Usually chlorophyll has greater variability in space, 
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time and in the vertical profile than DO, which can help to explain its larger AMD than DO. Both 
model solutions underestimate chlorophyll in the James River and on the Western Shore, but 
tend to slightly overestimate chlorophyll concentration in other tributaries.  Similarity is even 
more apparent for total nitrogen (TN) and total phosphorus (TP) between the two model 
solutions (Figure 5-19 and Figure 5-20).  For TN and TP, AMD is practically identical between the 
two model simulations in the main stem of the Bay, the James, Potomac, Rappahannock and the 
York rivers.  The new solution has a slightly higher AMD than the original simulation in the 
western and eastern shore and in the Patuxent River, but the differences are minimal.  Given the 
high similarity between the two model runs, the modification of the parameter values controlling 
phytoplankton growth and respiration rate to temperature increase did not significantly alter the 
calibration, and these parameter values can lead to adequate simulation of phytoplankton 
response to temperature under future climate change conditions. 

 
Figure 5-18: Absolute mean difference AMD (left panel) and mean difference MD (right panel) between simulation and data of 
chlorophyll in the main tributaries and the main stem of the Bay (Base: Calibration run; Base_NT: Simulation with revised 
parameter values for the phytoplankton growth and respiration functions with temperature). 

 
Figure 5-19: Absolute mean difference AMD (left panel) and mean difference MD (right panel) between simulation and data of 
total nitrogen TN in the main tributaries and the main stem of the Bay (Base: Calibration run; Base_NT: Simulation with revised 
parameter values for the phytoplankton growth and respiration functions with temperature). 
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Figure 5-20: Absolute mean difference AMD (left panel) and mean difference MD (right panel) between simulation and data of 
total phosphorus TP in the main tributaries and the main stem of the Bay (Base: Calibration run; Base_NT: Simulation with revised 
parameter values for the phytoplankton growth and respiration functions with temperature). 

 

5.3 Validation of model response 

5.3.1 Reasonable response to Sea Level Rise 

Clear and unambiguous validation of the effect of sea level rise on dissolved oxygen is impossible 
because of the absence of observational data. There is, however, the opportunity to compare the 
WQSTM results to the results of other models with equivalent sea level rise (SLR) projections, as 
well as to evaluate them relative to what would be expected with theory. A model 
intercomparison was conducted by Pierre St-Laurent under the direction of Dr. Marjorie 
Friedrichs at the Virginia Institute of Marine Science for the impacts of SLR on hypoxia over the 
period 1991-1995. Four scenarios were considered: a base case with historical sea levels and 
cases where the sea level is raised by 0.17m, 0.50m, and 1.00m (roughly representative of years 
2025, 2050, and 2100, respectively). All aspects other than the sea level (e.g., atmospheric 
conditions, oceanic temperatures, and salinity) were kept the same across the four scenarios. 
Four Chesapeake Bay models (covering a spectrum of model resolutions, boundary conditions, 
and numerical algorithms) were considered: WQSTM/CH3D-ICM, ChesROMS-ECB, UMCES-ROMS-
RCA, and SCHISM-ICM. 

The four numerical models reproduced historical observations (1991-1995) of salinity, water 
temperature, and dissolved oxygen (DO) with comparable skill but with different biases. Despite 
these differences the models exhibited considerable agreement regarding the effects of SLR on 
salinity and temperature. SLR increases salinity throughout the Bay and in all seasons. The salinity 
increase is apparent throughout the water column but is largest in the upper 10m and in shallow 
areas (with bottom depths <10m). The increase is quasi-linear with SLR and reaches +1.5psu in 
the scenario of +1.00m (consistent with earlier studies; Hong & Shen 2012). In a departure from 
the three other models, CH3D-ICM suggested increases in salinity that were 2-3 times smaller 
(+0.1-0.2 psu versus +0.2-0.3 psu with SLR = +0.17 m). 

SLR produced both cooler and warmer water temperatures depending on the time of the year. All 
four models exhibited the same seasonal pattern where SLR produces warmer conditions in the 
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winter months (November-January) and cooler conditions in the summer months (May-
July;Figure 5-21). This seasonal pattern was amplified quasi-linearly by SLR and reached +/-0.5oC 
in the case SLR=+1.00m. Such temperature anomalies were apparent throughout the Bay, with 
the shallow areas being affected first followed by the deeper channels. 

 
Figure 5-21:Change in water temperature along a transect of the Bay from south to north in response to an increase in sea level of 
0.17m. The figure is a monthly climatology for the months of January, May, July, and November of years 1991-1995. Each row 
represents one of the four models considered. 

SLR produced both increases and decreases in DO concentrations depending on the time of the 
year and the areas of the Bay. All four models exhibited some increases in DO concentrations in 
the bottom layer of the Bay's thalweg (a channel 25-30m deep aligned south-north that follows 
the main stem of the Bay) where hypoxia/anoxia is most prevalent (Figure 5-22). This 
improvement in bottom DO tended to be concentrated in the summer season and increased 
quasi-linearly with SLR. However, the absolute magnitude and duration of this improvement in 
summertime bottom DO varied substantially between the four models. CH3D-ICM exhibited the 
largest improvement in bottom DO with year-long DO increases of +0.2mg/L in the scenario 
SLR=+0.50m. UMCES-ROMS-RCA exhibited the smallest improvements in bottom DO; positive DO 
anomalies were concentrated in May-July and replaced by negative DO anomalies after July 
(Figure 5-22). 
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Figure 5-22: Change in dissolved oxygen concentrations in response to an increase in sea level of 0.50m. The figure is a monthly 
climatology for the months of March, May, July and September of years 1991-1995. Each row represents one of the four models 
considered. The magenta line in rows 2,3 is the vertical boundary of the hypoxic volume (DO<2mg/L) in the reference simulation. 

Changes in the solubility of oxygen could not explain the changes in summertime bottom DO 
simulated by the models. SLR increased salinity and cooled water temperatures in the summer, 
with these two changes affecting the saturation of DO in opposite ways. The two effects mostly 
cancelled each other in May-July and thus only explain a small fraction of the modeled changes in 
summer bottom DO. Other causal mechanisms were examined, notably a temperature-driven 
decrease in respiration rates or an increase in the physical ventilation of the bottom layer. The 
former mechanism was positively identified as the primary cause of the improvement in bottom 
DO in ChesROMS-ECB. 

The upper part of the water column (top 10m) and the shallow areas of the Bay (bottom depths 
<10m) exhibited a decrease in DO concentrations with SLR (Figure 5-22) in all four models. This 
decrease grows quasi-linearly with SLR and in the summer was linked to the upward shift of the 
pycnocline/oxycline with SLR. It is also apparent that the vertical boundary of the hypoxic volume 
(DO<2m/L) often reaches into the top 10m during the month of July (Figure 5-22), especially for 
UMCES-ROMS-RCA. Therefore, a vertical expansion of this hypoxic volume and an improvement 
in bottom DO are two impacts of SLR that are not exclusive, emphasizing the need for consistent 
metrics when comparing model projections. 

In conclusion, all four models exhibit some improvement in summer bottom DO in response to 
SLR and this improvement is approximately proportional to sea level rise. However, the 
magnitude and duration of this improvement varies substantially between the models (Figure 
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5-22). These variations are to be expected given the differences in the parameterization of 
biogeochemical processes and the differences in the magnitude of the “summer cooling” 
predicted by the models (Figure 5-21) that affects respiration rates, sediment oxygen demand, 
and ultimately oxygen concentrations.  

Note: the preceding text was approved based on presentations of the material in St-Laurent, et al. 
2019 prior to publication. 

5.3.2 Reasonable Response to Temperature Change 

Water temperature change is one of the key elements in determining the climate change impact 
on water quality in the Bay. Changes in water temperature not only affect water column 
stratification, but also biogeochemical rates and DO solubility. Robust simulation of water 
temperature change under climate change conditions is thus essential for reliable assessment of 
climate change impacts on water quality.  

Substantial data on water temperature have 
been collected over the past 30 years by the 
CBP partnership. A comprehensive analysis of 
long-term temperature trends and vertical 
patterns was conducted (Figure 5-23). The 
analysis was performed station by station, at 
each depth with 1 m resolution, and for each 
month of the year. Regression slopes were 
determined for temperature change over 30 
years for the summer season (July-September) 
and throughout the year. Considering the 
regression with depth as an approximation of 
the central tendency, the temperature change 
at the sea surface in summer is an increase of 
approximately 1.2 ℃ over 30 years and 1 ℃ at 
the bottom. The analysis based on data year-
round results in lower estimates of 
temperature increases as compared to the 
summer data, with increases of about 0.7 ℃ at 
the surface and 0.6 ℃ at the bottom. 

In order to assess the simulated water 
temperature change over 30 years, similar 
analysis was performed on the modeled 

Figure 5-23: Water temperature change over 30 years (1986-
2016) observed in Chesapeake Bay. Each dot is the regression 
slope for water temperature versus time at a specific station, 
depth and month, the blue line is the linear regression of 
temperature change with depth. The upper panel is July through 
September, and the lower panel is year-round.   
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results (Figure 5-24). For the base 
calibration case, a 10-year simulation was 
conducted for 1991 to 2000 with the 
central point at 1995. For the climate 
change scenario at 2025, which is 30 years 
apart from 1995, the model was run for a 
10-year simulation using oceanographic 
and meteorological forcings from a 
downscaling analysis of 2025 projections 
from 31 the global circulation models 
described in Section 2. Increases in air 
temperature and net heat flux, changes in 
precipitation and river discharge, sea level 
rise, and an increase in sea water 
temperature at the open boundary 
constitute the major changes in the 
forcing files under climate change 
conditions as described in previous 
sections of this report. The monthly 
temperatures at each station and depth 
represent the average of the 10-year 
simulation. There are 728 observation 
stations within the simulation domain 
for which modeled results were 
extracted for the analysis. The first layer 
in the simulation grid is 2.13 meters (7 
feet) thick and all other layers below the surface are 1.524 m thick (5 feet). As such, the vertical 
resolution in the simulation results is coarser than the resolution of the observations (at each 
meter). Also, due to the lower horizontal resolution of the model, which is about 1 km, the depth 
of the model grid is cut at 30 m deep and does not extend to 35 meters as in the observations at 
certain stations. 

A pattern similar to the observed trends is apparent in the simulation (Figure 5-24). For the 
summer period (July through September), the simulated temperature increase over 30 years is 
about 0.91 ℃ in the surface layer and 0.82 ℃ in the bottom layer. When considering year-round 
results, the simulated temperature increase is 0.86 ℃ over 30 years in the surface layer and 0.8 
℃ in the bottom layer. The modeled surface temperature increase in summer is somewhat lower 
than the number obtained from observations, but the predicted temperature increase over all 
seasons is slightly higher than the observations. Given that the model simulation has less spatial 
and temporal variability than the observations, the overall comparison between observed and 
simulated trends is plausible. There are two extensive studies on temperature change in the 
coastal area adjacent to Chesapeake Bay, and both reported a rate of temperature increase on 
the order of 0.3 ℃ per decade, which yields 0.9 ℃ increase over 30 years, similar to the modeled 
result (Thomas et al., 2017; Dupigny-Giroux et al., 2018).  

Figure 5-24:: Modeled water temperature change over 30 years (1995-
2025) in the Chesapeake Bay. Each dot is the water temperature 
change at a specific station, depth and month. The blue line is the 
linear regression of temperature change with depth. The upper panel is 
July through September, and the lower panel is year-round. 
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A signal of the thermocline is apparent in the simulation profiles. At depths of 7 to 12 m, 
particularly in summer, the regression line is located above a majority of the individual slopes, 
whereas the regression line is primarily below most of the individual slopes in the bottom layers 
(Figure 5-24, upper panel). According to this pattern, 30-year water temperature increases were 
smaller in the pycnocline as compared to deeper waters. There are two major sources of heat to 
the Bay: the surface heat flux and at the open boundary. Due to the estuarine circulation, 
according to which surface water flows out of the bay and bottom water intrudes into the Bay 
from the coastal ocean, it is likely that the surface water temperature increase is essentially 
caused by increased in surface heat flux. In contrast, warming of the bottom water is more likely 
due to temperature increase in the coastal ocean. The pycnocline is a transitional zone where 
heat flux may be reduced due to limited vertical mixing.  

As a specific example, the vertical 
profiles of simulated temperature 
and 30-year temperature change 
for Station CB4.3C, located along 
the thalweg in the upper Bay, are 
detailed in Figure 5-25. The 
individual and combined effects of 
climate change factors on Bay 
water temperatures were 
simulated by applying to the 
calibration run (Base): Increases in 
river discharge (Flow), surface 
heat flux (Heat), sea level rise (SLR) 
and all three combined (All). 
Temperature profiles of the base 
case, SRL, and Flow cases overlap 
(Figure 5-25, left panel), which 
means that changes in river 
discharge and sea surface level did not significantly alter water temperature at this station. 
Separately, the Heat and All cases also overlap with each other, indicating that heat flux is the 
primary factor in determining water temperature change under climate change conditions. A 
thermocline is visible from 5 to 12 meters. The right panel of Figure 5-25 illustrates the 30-year 
changes in water temperature in the difference scenarios. The Flow and SLR runs are practically 
identical and close to 0, indicating that these two factors had little impact on water temperature 
at this station in the central deep trench of the Bay. Nonetheless, the SLR run is slightly lower 
than the Flow run in the bottom layers, meaning that SLR may slightly decrease water 
temperature in the bottom layers. The two other runs, Heat and All, are quite similar as well. 
However, the All run generates temperature changes that are slightly lower than the Heat flux 
run at the bottom layers, which may reflect the effect of sea level rise at this station. In the All 
run, the surface water temperature increased 0.88 ℃ over 30 years, bottom water temperature 
by 0.8 ℃ with a water column average of 0.82 ℃. Temperature change tended to decrease from 
the surface toward the pycnocline, in coherence with the observed temperature change slope 
profile in Figure 5-24. 

Figure 5-25: Temperature vertical profile in July (left panel) and temperature 
change over 30 years (right panel). Base: Calibration; Flow: River discharge 
projected for 2025 was applied; Heat: Heat flux increase projected for 2025 
was applied; SLR: Sea level rise of 22cm from 1995 to 2025 was applied; All: 
All the above climate change factors were applied; s: Surface; b: Bottom; m: 
Mean over the water column. 
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Figure 5-26 illustrates the 
monthly water temperature 
change over 30 years in both 
the surface and bottom water 
at Station CB4.3C, together 
with air temperature change 
predicted by GCM downscaling 
analysis. The downscaled air 
temperatures were used to 
compute heat flux change 
under climate change 
condition. Seasonal variations 
in water temperature change 
range from 0.7 to 1 ℃. These 
variations essentially follow 
the variations in the air 
temperature change, which 
tend to be higher in April and 
November-December. These months are typically transitional periods from and to winter. Thus, it 
appears that climate change affects air and water temperature more during the transitional 
periods than the rest of the year. There tends to be a slight delay between air and water 
temperature change. Air temperature change in May is relatively lower, but water temperature 
change remains relatively higher during the same period of time, most likely due to the high air 
temperature increase in April. The same phenomenon can be observed in January, following the 
high air temperature increase in December. In the vertical dimension, only during the strong 
stratification season of summer (June through September) did surface water temperature 
increase significantly more than bottom water temperature. During other periods of the year, 
water temperature changes are similar in the surface and bottom layers, indicating weak 
stratification and stronger vertical heat transfer in the water column. 

Overall, the model predictions of water temperature change under climate change conditions are 
in reasonable agreement with the literature and observations. Although it is inevitable that 
discrepancies occur between simulation and observation, partly due to the large variation in the 
data, the model predictions are in reasonable agreement with the data in terms of magnitude 
and vertical patterns of temperature change under climate change conditions.    

5.4 Two-Step Simulation Approach 

Within the framework of the Chesapeake Bay TMDL, the approach of “Delta Change” of dissolved 
oxygen (DO) concentration has been taken for water quality criteria assessment of modeled 
nutrient management scenarios (EPA, 2010a). The WQSTM is calibrated to observed data but not 
unbiased relative to the data in each segment assessed.  These biases would carry forward into all 
modeled scenarios of nutrient reduction and climate change. To account for these biases, the 
change in dissolved oxygen predicted by the WQSTM is applied to the observed data.  These 
procedures are fully described in Appendix H of the TMDL documentation (EPA 2010a) and briefly 
discussed here. 

Figure 5-26: Monthly water temperature change from 1995 to 2025 in the surface 
layer (blue line) and bottom layer (orange line) predicted by the model at Station 
CB4.3C, together with air temperature change (black line) of downscaled GCMs 
ensemble prediction. The air temperature change was used to compute heat flux 
change in the climate change scenarios, and the simulated results are from the 
(“All”) run with all climate change factors combined. 
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Referring to Figure 5-27, the 1993-1995 
observed oxygen data are evaluated 
through the criteria assessment 
procedures (EPA 2010b), independent of 
any results from the WQSTM.  
Consequently, the criteria assessment of 
the base condition related to the 
calibration scenario of the WQSTM is 
fully based on observed data. For 
management scenarios, a ‘scenarioed’ 
data set is created by copying the 
observed dataset and modifying each 
point by applying the relative oxygen 
change predicted by the model.  
Water quality model results are 
output on an hourly basis and a 
regression is performed for the specific month and depth corresponding to each individual 
sample.  As such, approximately 720 paired data between the calibration and the nutrient 
management scenario are used for each regression specific to each datum of field observation. 
The regression function is then applied to its specific datum to project a modified datum.  The 
scenarioed data are finally processed through the same water quality criteria assessment 
procedure as the observed data to obtain the water quality attainment status under the nutrient 
management conditions. 

Management scenarios and the calibration run are simulated with the same physical forcings 
such as current, turbulence diffusivity, temperature, and salinity. Usually strong correlation 
between the calibration and management scenario exists so that the modified scenario data and 
the consequent criteria assessment 
results are robust. However, a challenge 
arises for management scenarios under 
climate change conditions. Sea level 
rise, air-temperature increase, heat flux 
intensification, temperature and salinity 
changes at the open boundary, and 
changes in watershed inputs of water 
and heat all influence the simulated 
physics of the Bay, which cascades to 
the biological and water quality 
processes.  For climate change 
scenarios, the physical model CH3D 
(Curvilinear Hydrodynamics Model in 
3D) is first run with forcing under 
climate change conditions. A new 
hydrodynamic field is thus established, 
which differs from the calibration physics. 

Figure 5-27: Water quality criteria assessment procedure for nutrient 
management scenarios (OLS: Ordinary Least Square regression) 

Figure 5-29: Hourly simulation of oxygen in a single WQSTM cell under 
calibrated and climate change conditions 

Figure 5-28: lack of correlation of simulated hourly oxygen values in 
a single WQSTM cell between the calibration run and a climate 
change run 
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For management scenarios under climate change conditions the newly established hydrodynamic 
field under climate change condition is used.  

Figure 5-29 shows that temporal mismatches can occur under climate change conditions.  The 
decrease in oxygen initially simulated on the evening of 7/29/1991 has moved to 7/28/1991 
under climate change conditions.  Accumulation of temporal mismatches over a simulated month 
can result in poor correlation between the calibration run and a climate change run, as shown in 
Figure 5-28.  By inspecting the plot, it can be seen that climate change in this month caused a 
change in timing but did not have a large effect on the mean or variance of dissolved oxygen.  
Applying the regression would lead to a similar mean, but a much smaller variance. 

The Modeling Workgroup of the Chesapeake Bay Program decided to use a two-step approach for 
water quality criteria assessment of climate change scenarios. The water quality model is run 
twice for each nutrient management scenario under climate change condition. The first water 
quality model is run with the physics under climate change conditions and nutrient loading of the 
calibration, called the “climate base scenario”. The second run is conducted with both physics and 
nutrient loading under 
climate change condition. 
The first run is an 
intermediate solution to 
bridge the management 
scenario under climate 
change condition to the 
calibration. Figure 5-30 
shows the two-step 
method.  Observations are 
first modified for the effect 
of climate change using a 
method similar to quantile 
mapping, creating a set of 
climate modified 
observations.  In the 
second step, the 
regressions are run 
between the climate base 
run and the climate nutrient run as in the standard CBP scenario analysis method.  

Figure 5-30: Two-step water quality criteria assessment procedure for management 
reduction scenarios under climate change condition (CC and Nutrient: Nutrient 
management scenario under climate change condition; OLS: Ordinary Least Square 
regression) 
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The percentile method used to create the climate 
scenarioed data is a form of quantile mapping illustrated 
in Figure 5-31 The simulated results for each grid cell 
corresponding to a specific observation datum from both 
scenarios are ranked based on their percentile ranging 
from the lower to the higher end. The observation datum 
is then located in the percentile cumulative distribution 
curve. The difference of that percentile between the 
climate change base scenario and the calibration 
constitutes the delta change in DO concentration and is 
added to the observation datum to obtain a modified 
data set for the climate base scenario. The newly 
established data set for the climate change base 
scenario is then used as the starting data set for the 
criteria assessment of the nutrient management 
scenario under a climate change condition. 

6 Findings and Partnership Decisions 

6.1 Summary 

The PSC met in March 2018 and agreed that the jurisdictions’ Phase III WIPs would address 
climate change narratively and include numeric pollutant reduction loads due to 2025 climate 
change conditions. Specifically, the WIPs would include a narrative strategy describing the 
jurisdictions’ current action plans and strategies to address an increase in nitrogen and 
phosphorus across the watershed as a result of climate change as well as changes in the tidal 
Chesapeake. The narrative included the initial estimates of climate change effects on dissolved 
oxygen standards equivalent to an increase of 9 million pounds of nitrogen and 0.5 million 
pounds of phosphorus across the watershed. As part of the same decision the PSC agreed to 
refine the climate modeling and assessment framework based on improved understanding of 
the science of the impacts of climate change. The partnership further committed to adopting 
revised numerical climate change targets by 2021 using updated versions of the CBP’s modeling 
tools and incorporating those revised climate change estimates into 2022-2023 Milestones. 

During 2019, the Modeling Workgroup oversaw improvements in the CBP’s ability to simulate 
the effects of climate change as documented above. Based on input from STAC and the 
partnership, upgrades were made to model inputs and processes. Changes were made to model 
inputs of rainfall, air temperature, wetland area change, sea level rise, and ocean temperature 
and salinity. Watershed delivery of nitrogen, phosphorus, and sediment were modeled using 
improved processes to capture the effects of climate changes on watershed loads. The 
estuarine algal simulation was improved, and the model results were validated using multiple 
model comparisons and analysis of observed data. 

Climate change was found to have a more detrimental effect on water close to the surface of 
the Bay compared to deeper water and the effect also varied spatially. However, an analysis 
showed that the current CBP models were not appropriately designed to assess designated uses 

Figure 5-31; Percentile method to modify the 
observation data based on the difference between 
the climate base on and the calibration. 

https://www.chesapeakebay.net/channel_files/26045/actions.decisions_final_03.02.18_clean.pdf
https://www.chesapeakebay.net/channel_files/40265/cc_risk_to_cb_open-water_do_wqs_-_initial_first_cut_white_paper_4-25-20.pdf
https://www.chesapeakebay.net/channel_files/40265/cc_risk_to_cb_open-water_do_wqs_-_initial_first_cut_white_paper_4-25-20.pdf
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in shallow waters and that Open Water designated uses, while negatively affected, were still 
likely meeting water quality standards. There were also areas in the CB6MH and CB7MH 
segments of the Bay where the current open water designated use is applied throughout the 
water column (surface to bottom). In these areas, the models indicated that the non-attainment 
in the open water standard was isolated to areas below the pycnocline, an area typically held to 
the deep water or deep channel standard in mesohaline Bay segments. Modeling indicated that 
the deep water standard would be met in these areas of CB6 and CB7 under climate change 
conditions. The Modeling Workgroup recommended, and the WQGIT agreed, that Open Water 
designated uses not be considered for the current climate change allocation decisions. 
However, the partnership’s Criteria Assessment Protocol Workgroup (CAPW) will evaluate 
climate change risks to current water quality standard criteria and designated uses, including 
the open water designated use for CB6MH and CB7MH, beginning this summer. Preliminary 
evaluations suggest that the expansion of the deep water designated use in these areas would 
be appropriate. 

The WQGIT discussed climate allocation approaches at meetings from January through 
September, 2020.  After consideration of many alternatives, the WQGIT recommended that the 
primary method of accounting for the effects of climate change should be to reduce loads in the 
areas where they are increasing due to climate change.  The recommended reductions are to be 
included in milestones starting with 2022-2023 and additional implementation completed by 
2025.  Preliminary analysis suggests that the negative effects of climate change on dissolved 
oxygen water quality standards will increase in the future.  The CBP will re-evaluate the effects 
of 2035 climate in 2025.  The allocation method based on loads was approved by the 
Management Board on 10/15/2020 and the Principals’ Staff Committee on 12/17/2020.  Details 
of the decision are in section 6.7 below. 

6.2 Estuarine Model Scenario Results 

Climate change scenarios were run with modified inputs for the watershed and estuarine model 
for the years 2025, 2035, 2045, and 2055.  The achievement of dissolved oxygen water quality 
standards was calculated for each run and designated use.  Table 6-1 shows additional non-
attainment that results from the application of climate change for the Deep Channel designated 
use.  Note that for CB4MH deep channel the non-attainment roughly doubles from 2025 to 
2035 and then doubles again by 3055.  Other main bay segments are not pushed into additional 
non-attainment by climate change Table 6-2 shows the results, again in units of additional non-
attainment, for the Deep Water designated use.  Additional non-attainment is more widespread 
in Deep Water than in Deep Channel, but with lower percentage increases. 

https://www.chesapeakebay.net/channel_files/40216/minutes_april_2020_quarterly.pdf
https://www.chesapeakebay.net/channel_files/40266/wqgit_actions_and_decisions_04.27.2020__revised.pdf
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Table 6-1: Achievement of Deep Channel DO water quality standard (1mg/l instantaneous minimum) expressed as an incremental 
increase over the PSC agreed to 2025 planning targets 

  
Table 6-2: Achievement of Deep Water DO water quality standard (3 mg/l 30-day mean) epressed as an incremental increase over 
the PSC agreed to 2025 planning targets 

 

Table 6-3 contains results for non-attainment of Open Water dissolved oxygen water quality 
standards in main stem Bay and the mesohaline sections of large rivers where the WQSTM is 
most reliable for open water.  Note that this table is not expressed as additional non-

2025 Climate 
2025 Land Use

2035 Climate 
2025 Land Use

2045 Climate 
2025 Land Use

2055 Climate 
2025 Land Use

204TN 208TN 212TN 220TN
14.0TP 14.6TP 15.4TP 16.7TP

1993-1995 1993-1995 1993-1995 1993-1995
CB 

Segment State
DO Deep 
Channel

DO Deep 
Channel

DO Deep 
Channel

DO Deep 
Channel

CB3MH MD 0.00% 0.00% 0.00% 0.00%
CB4MH MD 1.47% 3.15% 4.62% 7.31%
CB5MH MD 0.00% 0.00% 0.00% 0.00%
CB5MH VA 0.00% 0.00% 0.00% 0.00%
POTMH MD 0.00% 0.00% 0.00% 0.00%
RPPMH VA 0.00% 0.00% 0.00% 0.00%
ELIPH VA 0.00% 0.00% 0.00% 0.00%
CHSMH MD 0.01% 0.92% 1.08% 2.34%

2025 Climate 
2025 Land Use

2035 Climate 
2025 Land Use

2045 Climate 
2025 Land Use

2055 Climate 
2025 Land Use

204TN, 14.0TP 208TN, 14.6TP 212TN, 15.4TP 220TN, 16.7TP
1993-1995 1993-1995 1993-1995 1993-1995

CB 
Segment State

DO Deep 
Water

DO Deep 
Water

DO Deep 
Water

DO Deep 
Water

CB3MH MD 0.01% 0.15% 0.16% 0.21%
CB4MH MD 0.94% 1.61% 2.00% 2.66%
CB5MH MD 0.52% 1.01% 1.32% 1.66%
CB5MH VA 0.00% 0.00% 0.00% 0.00%
CB6PH VA 0.00% 0.00% 0.00% 0.00%
CB7PH VA 0.00% 0.00% 0.00% 0.00%
PATMH MD 0.01% 0.02% 0.42% 2.66%
MAGMH MD 1.66% 1.66% 1.91% 1.91%
SOUMH MD 0.00% 0.00% 0.00% 0.00%
SEVMH MD 0.00% 0.00% 0.00% 0.00%
PAXMH MD 0.00% 0.00% 0.00% 0.00%
POTMH MD 0.03% 0.15% 0.56% 0.81%
RPPMH VA 0.00% 0.24% 1.48% 1.85%
YRKPH VA 0.00% 0.00% 0.00% 0.00%
ELIPH VA 0.00% 0.00% 0.00% 0.00%
SBEMH VA 0.00% 0.00% 0.44% 3.12%
CHSMH MD 0.00% 0.00% 0.00% 0.00%
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attainment, but total non-attainment.  CB6PH and CB7PH are the only segments where climate 
change causes significant increases in non-attainment through 2055.  MOBPH (Mobjack Bay), 
and TANMH_VA (Tangier Sound in Virginia) both have very small increases by 2055, however 
these are adjacent to CB6PH and CB7PH and likely share some monitoring stations. 

Table 6-3: non-attainment of open water DO water quality standard (5-5.5 mg/l 30-day mean), main bay and mesohaline regions 
only 

 

6.3 Open Water designated uses 

There was general agreement that the Open Water designated use is an important are to protect.  
The Open Water criteria are based on living resource needs for striped bass and other important 
species.  Roughly two-thirds of the mainstem Bay volume and two-thirds of the tidal volume is 
designated as Open Water habitat and the portion of the Bay that people interact with the most.  
It is also likely that Open Water and Shallow Open Water 
(less than 2 meters deep) may have increased impacts 
from future estimated temperature increases.  
However, Table 6-3 shows that only CB6PH and CB7PH 
are pushed into violation by the modeled effects of 
climate change in Open Water and it was determined 
that there were substantial questions about the 
appropriate Open Water boundary for these two 
segments.  The MWG and WQGIT discussed Open Water 
violations during several meetings in 2020 and decided 
not to include Open Water violations in the current 
climate change allocations. 

CB6PH and CB7PH are unique in that they are the only 
segments with Deep Water designated use where the 
Deep Water boundaries don’t extend to the entire 
segment as shown in Figure 6-1.  These boundaries were 
set in the 2003 Technical Support Document (U.S. EPA 
2003).  Quoting from the document: “The delineation of 
the boundary was determined by examining maps of 
contemporary dissolved oxygen concentration distributions and the anecdotal historical dissolved 
oxygen concentration data record.”  The preceding indicates that the boundaries may have been 

Figure 6-1: Dissolved oxygen designated use 
boundaries. 
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chosen based on best professional judgement.  Further, in a 2004 addendum to the same 
document (U.S. EPA 2004), the Deep Water boundary for CB6PH was moved southward such that 
the 2003 Cap Load allocations produced non-attainment under 1% in Open Water.  In other 
words, the CB6PH boundary was determined such that the Open Water designated use was right 
on the edge of non-attainment, rather than strictly looking at living resources needs.   

To investigate whether the modeled violations were occurring in the surface mixed layer, an 
assessment was run where CB6PH and CB7PH had Deep Water for the entire area rather than just 
the northern portion.  No violations of Deep Water or Open Water were found for climate change 
runs through 2055.  The conclusion was that Open Water violations under climate change were 
occurring in sub-pycnocline waters and that the sub-pycnocline waters were not violating the 
Deep Water standard of 3 mg/l dissolved oxygen. 

With this understanding, the MWG did not recommend using open water to drive climate change 
allocations in 2020.  The Criteria Assessment Protocol Workgroup will be working on any changes 
to water quality standards assessment related to climate change in time for a re-evaluation of 
climate change effects in 2025. 

Open Water DO nonattainment in shallow water requires additional investigation. Ultimately, an 
improved Bay Model simulation of shallow water is needed to better understand the climate 
effects on Open Water DO water quality standards in Chesapeake’s shallow waters. 

6.4 Violation Balancing 

The MWG recommended and the WQGIT approved a method of climate change allocations 
whereby some areas of the bay will have higher non-attainment after climate change and 
allocated reductions and some areas will lower non-attainment compared to the modeled values 
used in setting the 2018 Phase III WIP planning targets.  The rule was adopted that the total 
volume-weighted violation in the standard set of segments used to set TMDL allocations would 
remain the same.  This method is illustrated in Figure 6-2. 

 
Figure 6-2: Illustration of violation balancing method 
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The planning targets agreed to be the PSC in 2018 resulted in a modeled violation rate of 5.09% 
for CB4MH Deep Water.  Multiplying the violation percentage by the 2854 million cubic meter 
average volume of CB4MH Deep Water gives a volume of 145 million cubic meters of water in 
violation as shown by the blue bar in Figure 6-2 above.  Values for other Deep Water and Deep 
Channel designated uses are calculated resulting in a total allowable volume of 305 million cubic 
meters.  Climate change is then applied to the watershed and estuarine models and a new 
violation volume of 375 million cubic meters is estimated as shown in the orange bars.  Finally, a 
watershed load reduction scenario is run that results in the same overall violation volume of 305 
million cubic meters, although with different volumes in most designated uses compared to the 
2018 planning targets. 

6.5 Climate Allocation Options 

Over the first half of 2020, the WQGIT considered alternatives for allocating the nutrient 
reductions to counter the effect of climate change on dissolved oxygen in the deep water and 
deep channel designated uses in the Chesapeake Bay. All options met the same volume-
weighted average non-attainment as the PSC-agreed 2025 Phase III WIP planning targets based 
on 1990s climate.  Further, all modeled non-attainment levels are within current or proposed 
variances. Regardless of the allocation option that is chosen, jurisdictions have the flexibility to 
meet the allocated climate change load reductions using whatever combination of point source 
or non-point source actions they deem appropriate. Jurisdictions may also exchange reductions 
between basins and nutrients, subject to appropriate basin-to-basin and nitrogen-to-
phosphorus exchange ratios. 

6.5.1 Year 

The WQGIT reviewed modeling scenarios that showed increasing level of nutrient reduction effort 
necessary as climate change intensifies from 2025 through 2055. The WQGIT considered the 
options of 2025 and 2035 for the target years for climate change effects and for implementation. 
In keeping with the PSC direction, the WQGIT decided to continue with accounting for climate 
effects between 1995 and 2025 and incorporating additional reductions by 2025. The WQGIT also 
decided that the current estimates of 2035 climate change effects should be documented in a 
narrative in the 2022-2023 milestones and that the partnership should continue to refine the 
climate modeling and assessment framework to update the 2035 estimates in 2025. This 
approach mirrors the March 2018 PSC approved approach for the initial 2025 climate change 
estimates. 

6.5.2 Allocation chart method 

The allocation chart method was used in the 2010 TMDL and the 2017 Phase III WIP planning 
target calculations.  The nitrogen allocation curve used in 2017 and 2018 is shown in Figure 6-3. 
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Figure 6-3:Nitrogen allocation curve used in the Phase III WIP planning targets 

The horizontal axis is the relative effectiveness of a state-basin in ug/l increase in dissolved 
oxygen per million pounds of reduction.  A state-basin with a score of 10 can achieve twice the 
oxygen effect with the same reduction effort compared to a state-basin with a score of 5.  The 
vertical axis is the fraction of possible reductions that state-basin is expected to implement.  A 0% 
score on this axis indicates the state-basin could remove all existing management actions and a 
100% score would mean that the state-basin would need to implement the maximum possible 
management actions. More information on the allocation curve and relative effectiveness is 
available in the TMDL documentation (U.S. EPA 2010a). 

An allocation curve is a statement of policy, not a description of a physical relationship.  The 
orange line represents the CBP partnership policy that state-basins containing point sources are 
responsible for load reductions equivalent to 90% of what is possible if they are in the upper half 
of effectiveness values and responsible for load reductions equivalent to 67% of what is possible 
for a relative effectiveness score of zero.  The grey ‘all else’ line represents the CBP partnership 
policy that the most effective basin should be responsible for a level of effort 20 percentage 
points higher than the least effective basin.  The intercept of the ‘all else’ or ‘non-WWTP’ line is 
placed at the level of reduction where water quality standards are met.   

The climate allocations presented to the WQGIT, MB, and PSC in 2017 were calculated by raising 
the intercept of the ‘all else’ line to counteract the effects of climate change, but this was simply 
an example method that was not part of any partnership deliberation.  However, the WQGIT 
considered the option of increasing the ‘all else’ line as a viable allocation option. 

6.5.2.1 Consideration of Wastewater Treatment 

The WQGIT considered additional allocation options that used the TMDL allocation chart but 
included various changes to the wastewater treatment line. The wastewater treatment line in the 
original TMDL allocation chart had the loads from wastewater plants in the more effective basins 
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set a 4.5mg/l (90%) for nitrogen and those in the least effective basins moving toward an 
intercept at 8 mg/l (67%). Several scenarios were proposed and analyzed including: 

- Moving the WWTP and non-WWTP lines by the same amount 
- Moving the upper part of the WWTP line from 4.5 mg/l TN to 4 mg/l TN and from 0.22 mg/l 

TP to 0.18 mg/l TP and raising the non-WWTP line for any remaining load 
- Moving the intercept of the WWTP line from 8 mg/l TN to 6 mg/l TN and from 0.54 mg/l TP 

to 0.364 mg/l TP and raising the non-WWTP line for any remaining load 

These alternatives to the allocation approach resulted in options referred to as ‘NPS+PS’, ‘6 and 4.5’, ‘6 
and 4’, and ‘8 and 4’, each with a ‘Watershed Loads First’ and ‘Allocate All’ option. At the July 2020 
WQGIT meeting, consensus was reached to exclude the ‘6 and 4.5’ and ‘6 and 4’ scenarios. 

6.5.3 Jurisdictional Watershed Loads method 

Climate change between 1995 and 2025 has 
generally increased total rainfall, the intensity 
of rainfall, and temperature-driven 
evapotranspiration in the watershed. Some of 
the improvements made since late 2017 in the 
CBP’s ability to simulate the effects of climate 
change have allowed for improved geographic 
resolution in the resulting watershed loads. In 
most areas of the watershed, the total rainfall 
increase is larger than the evapotranspiration 
increase which leads to an increase in flow and 
resulting increase in nitrogen (Figure 6-4). The 
increase in water balance and the increase in 
rainfall intensity lead to an increase in 
phosphorus for all parts of the watershed. It 
was determined through modeling scenarios 
that if the individual jurisdictions were to 
reduce nitrogen and phosphorus loads by the 
amount of the climate-related increase in 
watershed loads estimated through 2025, 
water quality standards in the deep water and 
deep channel designated uses in the 
Chesapeake Bay would be met at a level 
consistent with the 2017 planning target 
decision. As a result, no additional allocation, 
beyond the watershed-based load increases 
estimated for each jurisdiction, would be 
needed. However, the estimate for 2035 (and beyond) climate change would need allocation 
beyond the jurisdictional watershed loads. This alternative is referred to as ‘Watershed Loads 
First’ or ‘L1st’ and would also require the selection of an alternative allocation approach for 2035 
and beyond. 

Figure 6-4: Change in nitrogen delivery to tidal waters due to 
climate change between 1995 and 2025 
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6.6 Proposed Adjustments to Watershed Loads First Allocation Method 

The WQGIT expressed interest in the reduction of climate change-induced loads for each 
jurisdiction using the ‘watershed loads first’ method. It was noted that New York had a much 
larger proportional (to planning targets) increase than other jurisdictions using this allocation 
approach. New York’s allocation was also a larger increase than the initial value presented to the 
PSC in December 2017. It was further noted that West Virginia had a negative load increase 
estimated due to climate change. The adjustment proposed, for the 2025 climate decision only, 
is for New York to be allocated 0.3 million pounds less nitrogen than their science-based 
watershed load increase due to climate change (returning to a value similar to the initial 
estimate in 2017). To make up for the 0.3 million pounds nitrogen adjustment policy, West 
Virginia would surrender their negative load increase to have no change in their nitrogen load. 
All other jurisdictions would make up the difference by increasing their allocated reductions 
equal to 108% of their science-based watershed load climate increase. This change will only be 
made to the nitrogen allocations for 2025 climate change. All jurisdictions’ phosphorus 
allocations would remain unchanged from the science-based watershed loads first option. 

Table 6-4: : Proposed additional reductions beyond the Phase III Planning Targets to account for the effects of climate change in 
million pounds per year. “Dec 2017 PSC” are the climate adjustments considered by the PSC in December 2017, prior to model 
adjustments. “L1st Climate increase” are the 2025 watershed load increases due to climate change. “Adjusted L1st Proposed” are 
the proposed final adjustments to nitrogen loads to account for NY increases compared to the December 2017 PSC loads. 

 
 
 

State 

TN TP 
Dec 

2017 
PSC 

L1st 
Climate 

increase 

Adjusted 
L1st 

Proposed 

 Dec 
2017 

PSC 

L1st 
Climate 

increase 

Adjusted 
L1st 

Proposed 

 

DC 0.006 0.006  0.007  0.001 0.001  0.001  
DE 0.397 0.036  0.039 0.006 0.003  0.003  
MD 2.194 1.061  1.142 0.117 0.111  0.111  
NY 0.400 0.699  0.399 0.015 0.044  0.044  
PA 4.135 1.683  1.811 0.143 0.095  0.095  
VA 1.722 1.476  1.589 0.187 0.337  0.337  
WV 0.236 -0.054  0.000 0.017 0.009  0.009  
Total 9.089 4.908  4.986 0.485 0.599  0.599  
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6.7 Decisions and Timeline 

March 2018  PSC requests additional modeling and consideration of 
climate change  

October 2019  Modeling Workgroup approves modeling tools for 
climate change 

February 2020  WQGIT agreed to use the updated climate model when 
assessing the allocation options 

April 2020  WQGIT agrees to not include CB6MH and CB7MH in 
climate calculations 

July 2020  WQGIT agrees to include adjustments for 2025 climate 
and reassess 2035 climate during the year 2025 

August 2020  WQGIT considered Watershed loads first with a special 
case for NY 

September 10, 2020 WQGIT Consensus on 2025 Watershed loads first with a 
special case for NY September 28, 2020 WQGIT 
Consensus on 2035 narrative 

October 15, 2020 Management Board reaches consensus on the following statements.  
Approved statements are final decisions and do not need to be considered by the PSC.  
Endorsed statements are recommended by the management board for approval by the PSC 

Management Board Final Approved Statements 10/15/2020 

1. Accept updated models for use in re-evaluating climate change for 2025 and 2035. 

2. Exclude model estimated non-attainment in shallow open water from the climate 
change allocation. 

3. Exclude model estimated non-attainment in open water in CB6 and CB7 from the 
climate change allocation. 

4. Criteria Assessment Protocol (CAP) Workgroup will evaluate climate change risks to 
current water quality standard criteria and designated uses, including the open water 
designated use for CB6MH and CB7MH. A review of historical monitoring in these areas 
shows pycnoclines exist annually, justifying the Deep Channel designated use is 
appropriate in the area. 

5. 2025 climate change estimate will consider main Bay DW/DC and ensure additional non-
attainment returns to 2017 Planning Target levels and within existing variances. 

https://www.chesapeakebay.net/channel_files/26045/actions.decisions_final_03.02.18_clean.pdf
https://www.chesapeakebay.net/channel_files/38281/minutes_october_modeling_wg_quarterly_reivew.pdf
https://www.chesapeakebay.net/channel_files/40262/wqgit_final_actions_and_decisions_02.10-11.2020_.pdf
https://www.chesapeakebay.net/channel_files/40266/wqgit_actions_and_decisions_04.27.2020__revised.pdf
https://www.chesapeakebay.net/channel_files/40269/wqgit_actions_and_decisions_07.27.20.pdf
https://www.chesapeakebay.net/channel_files/40270/wqgit_actions_and_decisions_08.24.2020__2.pdf
https://www.chesapeakebay.net/channel_files/40270/wqgit_climate_and_srs_actions__decisions_09.10.2020.pdf
https://www.chesapeakebay.net/channel_files/41727/mb_actions_decisions_10-15-20_revised_roll_call.pdf
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Management Board Final Statements Endorsed to the PSC 10/15/2020 

6. Jurisdictions will be expected to account for additional nutrient and sediment pollutant 
loads due to 2025 climate change conditions in a Phase III WIP addendum and/or 2-year 
milestones beginning in 2022. 

7. Adopted the loads in Table 6-4, this document. 

8. Include a narrative in the Milestones that describe the current understanding of 2035 
climate change conditions, to the effect that “Preliminary estimates for the climate 
impact through 2035 suggest a doubling of the 2025 load effect, suggesting that the 
effect of climate change on our ability to meet the Bay’s water quality standards is an 
ongoing concern.” Specific language for the narrative to be developed by the WQGIT. 

9. Continue efforts to improve understanding of the science and refine estimates of 
pollutant load changes due to 2035 climate change conditions. 

a) Develop a better understanding of the BMP responses, including new or other 
emerging BMPs, to climate change conditions.  

b) Compare the current 2025 climate change assumptions with measured climate 
conditions through 2024.  

i. To include rainfall volume, intensity, and distribution, air temperature, 
hydrology, water temperature, sea level rise, and changes in bay 
stratification and circulation.  

c) Consider the efficacy of using projections from measured trends versus 
downscaled global climate model data for revised 2035 estimates.  

d) Improve understanding and simulation of climate change impacts to open water 
designated use in shallow waters. 

10. In 2025, the Partnership will consider results of updated methods, techniques, and 
studies and revisit existing estimated loads due to climate change to determine if any 
updates to those 2035 load estimates are needed. 

December 17 2020  PSC meeting.  The Principals’ Staff Committee met on to discuss the 
climate change final decision.  They approved the following:  

o The 2020 update to the 2025 climate load allocations based on the latest modeling assessment. 
o Jurisdictions are expected to account for additional nutrient and sediment pollutant 

loads due to 2025 climate change conditions in a Phase III WIP addendum and/or 2-year 
milestones beginning in 2022. 

o Jurisdictions are expected to include a narrative in the 2022-2023 Milestones that 
describe the current understanding of 2035 climate change conditions, 

https://www.chesapeakebay.net/what/event/principals_staff_committee_meeting15
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o In 2025, the Partnership will consider results of updated methods, techniques, and 
studies and revisit existing estimated loads due to climate change to determine if any 
updates to those 2035 load estimates are needed. 

 
6.8 Final planning target adjustments for 2025 

Table 6-5: Final jurisdiction-basin planning targets for the 2017 Midpoint Assessment. 

  

2018 Planning 
Targets approved 

by PSC 
2019 Planning Targets with 

Exchanges and Sediment 
2020 Climate 
Adjustments 

2020 Planning Targets 
with Climate reductions 

StateBasin Nitrogen Phosphorus Nitrogen Phosphorus Sediment Nitrogen Phosphorus Nitrogen Phosphorus 

DC Potomac 2.42 0.130 2.42 0.130 41.9 0.01 0.001 2.42 0.129 

DE Eastern Shore 4.55 0.108 4.55 0.108 26.7 0.04 0.003 4.51 0.105 

MD Eastern Shore 15.21 1.286 15.60 1.290 2903.4 0.37 0.032 15.23 1.258 

MD Patuxent 3.21 0.301 3.21 0.300 437.7 0.11 0.019 3.09 0.281 

MD Potomac 15.30 1.092 15.80 1.090 1928.0 0.21 0.033 15.59 1.057 

MD Susquehanna 1.18 0.053 1.60 0.050 113.8 0.14 0.007 1.46 0.043 

MD Western Shore 10.89 0.948 9.63 0.950 2959.9 0.31 0.020 9.32 0.929 

NY Susquehanna 11.53 0.587 11.53 0.587 532.7 0.40 0.044 11.13 0.543 

PA Eastern Shore 0.45 0.025 0.46 0.022 27.4 0.05 0.005 0.41 0.017 

PA Potomac 6.11 0.357 6.14 0.338 295.5 0.04 0.008 6.11 0.330 

PA Susquehanna 66.59 2.661 66.87 2.544 1838.2 1.72 0.082 65.14 2.462 

PA Western Shore 0.02 0.001 0.02 0.001 0.3 0.00 0.000 0.02 0.001 

VA Eastern Shore 1.43 0.164 1.83 0.152 473.3 0.01 0.000 1.82 0.152 

VA James 25.92 2.731 21.81 2.241 2015.2 0.30 0.143 21.51 2.097 

VA Potomac 16.00 1.892 16.51 1.823 1929.7 0.56 0.073 15.95 1.750 

VA Rappahannock 6.85 0.849 7.09 0.819 1505.1 0.54 0.102 6.54 0.717 

VA York 5.52 0.556 5.71 0.548 949.1 0.17 0.018 5.54 0.530 

WV James 0.04 0.005 0.05 0.006 13.0 0.00 0.000 0.05 0.006 

WV Potomac 8.18 0.427 8.18 0.427 595.9 0.00 0.008 8.18 0.418 

          
Table 6-5 contains the jurisdiction-basin planning targets for the 2017 Midpoint Assessment.  
The 2018 planning targets approved by the PSC were modified through exchanges documented 
in the phase III WIPs.  Climate adjustments were made as detailed in this document to lower 
the planning targets for use starting with the 2022-2023 milestones. 
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