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Executive Summary 

This report documents the conclusions and recommendations reached by a peer review panel 

convened by the Chesapeake Bay Program’s Scientific and Technical Advisory Committee 

(STAC) to review the Chesapeake Bay Program (CBP) partnership’s Phase 6 version of the 

Chesapeake Bay Watershed Model (P6 WSM).  The review was a “responsive review,” 

undertaken at the request of the CBP’s Modeling Workgroup and based on questions formed 

collaboratively by CBP and STAC.  The review is intended to provide guidance for the CBP as 

they refine the P6 WSM for the Mid-Point Assessment in 2017.  Overall, the review panel as a 

whole was favorably impressed with the integrated P6 WSM framework.  Recommendations 

from the review panel focus largely on a longer-term suggestion for the CBP to more fully 

exploit the multiple model framework and incorporate estimates of uncertainty into the output.  

Other recommendations are for better justification and documentation of approaches taken.  

Background and Review Process 
Phase 6 is the most recent of a series of increasingly refined versions of the Chesapeake Bay 

Watershed Model (WSM) developed since 1982.  Different versions of the model have been 

operational and serving to guide CBP management decisions for more than three decades.  

However, the P6 WSM is a major departure from previous versions which were largely based on 

a highly modified Hydrological Simulation Program -FORTRAN (HSPF) framework.  While the 

deterministic HSPF framework is preserved in the P6 WSM for hydrologic and sediment 

simulations, the approach to water quality simulation is entirely new, relying on integration of 

multiple models for different biogeochemical processes in the watershed.   

The review was conducted in two phases between June 2016 and August 2017.  Responses 

relevant to all questions except nine and ten were finalized in Phase 1 of the review, which was 

completed in December 2016.  Responses to questions nine and ten were delayed because the 

two issues involved (Conowingo Reservoir modeling and WSM-related aspects of climate 

change assessment) had not yet been finalized and documented by the CBP.  The final 

documentation relevant to these questions (and a revised STAC-approved question ten) were 

provided in June 2017 and early July 2017, respectively.  Panel responses relevant to questions 

nine and ten were completed in early August 2017 and were subsequently reviewed by STAC 

membership. 

Summary of Major Recommendations 
1. A more detailed and comprehensive description and rationale of model structure and linkages 

is needed. 

2. The precise role that multiple models play and the structure that is used to accommodate 

multiple models needs to be clarified. 

3. An accuracy or skill assessment of the underlying individual models used in the multiple 

model approach is warranted. 
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4. The panel encourages the CBP to transition from a multi-level model approach (e.g., several 

models providing a single point of input to the larger watershed model, which results in a 

single model realization) to a true ensemble model approach, which would allow for a 

Bayesian model analysis and a more thorough quantification of uncertainties. 

5. Related to summary recommendation 4, above, uncertainty analyses should be developed for 

each model component; the panel believes this would be a natural extension of the ensemble 

model approach. 

6. Use of expert panels for establishing BMP (best management practices) efficiencies should 

develop an explicit basis/approach to evaluating uncertainty in the estimates because this 

information would constitute priors for the Bayesian analysis. 

7. The CBP should commit to a process for improving the model’s capability to represent 

processes of particle transport, storage, and reworking in the Chesapeake Bay watershed, as 

the Revised Universal Soil Loss Equation 2 (RUSLE2) foundation is questionable at the river 

basin scale. 

8. The CBP should encourage the development of sub-models that attempt to down-scale the 

watershed models while also exploring process-based mechanisms affecting water quality. 
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Introduction 

This report documents the conclusions and recommendations reached by a peer review panel 

convened by the Chesapeake Bay Program’s Scientific and Technical Advisory Committee 

(STAC) to review the Chesapeake Bay Program (CBP) Phase 6 Watershed Model (P6 WSM).  . 

Background 
Phase 6 is the most recent of a series of increasingly refined versions of the Chesapeake Bay 

Watershed Model (WSM) developed since 1982.  Different versions of the model have been 

operational for more than three decades and have served throughout this period to help guide 

management decisions by multiple CBP partners, including the US EPA.  However, the P6 

WSM is a major departure from previous versions which were largely based on a highly 

modified Hydrological Simulation Program-FORTRAN (HSPF) framework.  While the 

deterministic HSPF framework is preserved in P6 WSM for hydrologic and sediment 

simulations, the approach to water quality simulation is entirely new, relying on multiple models.   

Review Process 
The CBP Office (CBPO), through the Modeling Workgroup, submitted a request for a 

responsive review of the P6 WSM, with particular emphasis on reviewing the new multiple 

model aspects of the watershed simulation and obtaining guidance as the CBPO modeling team 

continued to refine the P6 WSM for the Mid-Point Assessment in 2017.  The final set of 12 

review questions, determined collaboratively by the CBPO and STAC, are attached herewith in 

Appendix A. 

The review was conducted in two phases.  The first phase was conducted between August and 

December of 2016 and focused on all questions except questions nine and ten, with the 

understanding that final documentation for these questions was not yet available.  The second 

phase of the review was conducted between June and August of 2017 and focused on questions 

nine and ten, as well as associated issues relevant to questions 11 and 12.  

For Phase 1 of the review, an initial set of questions was posed by CBPO in August 2016 for 

approval by the STAC membership.  After modest revision, the amended questions and 

associated documentation were received by STAC from the CBPO Modeling Workgroup on 

September 15, 2016.  A review panel consisting of 10 recognized experts in the various 

components of the P6 WSM was convened and met for initial discussion via a conference call in 

September 2016.  On September 28 2016, the panel met at the CBP office in Annapolis MD 

where Gary Shenk (USGS) and the CBPO model development team presented a P6 WSM 

overview and responded to panel questions, after which the panel met to discuss and respond to 

the questions posed by the CBP.   

Phase 2 of the review focused on questions nine and ten, which relate to the P6 WSM handling 

of the Conowingo Reservoir within the Lower Susquehanna River Reservoir System (LSRRS) 

and P6 WSM approaches to the assessment of climate change effects.  Final approaches and 

documentation were still under development by the CBP partnership at the time of Phase 1 
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review, therefore, Phase 2 review efforts were postponed until receipt of final documentation in 

June 2017.  Notably, both the LSRRS and climate change assessment work were each also being 

subjected to separate independent reviews.  In particular, an independent panel review of model 

enhancements for the LSRRS was coordinated by the Chesapeake Research Consortium (CRC) 

that was conducted between April 2016 and August 2017.  The LSRRS expert panel review (Ball 

et al. 2017) provided independent review of modeling efforts undertaken by an Exelon-

sponsored team in cooperation with the Maryland Department of Natural Resources and 

Maryland Department of the Environment.  One of the reviewers on that effort (James Martin) 

was added to the WSM team to provide liaison to this prior review, which had helped inform the 

CBP in their P6 WSM development effort.  Second, a separate STAC review of the CBP’s 

broader Climate Change Assessment Framework (CCAF) is underway at the time of this report.  

Within the context of these other reviews, the CBP asked the P6 WSM review panel not to focus 

on the LSRRS modeling effort or the broader aspects of the CCAF, but to instead focus 

principally on the P6 WSM application of results from those and other previously peer-reviewed 

research efforts, as available in published literature. 

Final documentation for questions nine and ten and a STAC-approved revision to question ten 

were provided by the CBP in June 2017 and early July 2017, respectively.  Following several 

conference calls, this aspect of the review was completed in August 2017.  Complete responses 

to all twelve review questions follow. 

Panel Responses and Recommendations 

The document is structured to respond to each question individually, thus, where there is overlap 

among questions, some information is presented more than once.  For comments regarding the 

model documentation, specific comments can be found in responses to each question, and 

general recommendations are made in response to review question 12. 

Question 1. Please comment on the overall appropriateness of the approach taken in the Phase 6 
structure of a deterministic hydrology and sediment transport management model combined with 
a nutrient model informed by multiple models and multiple lines of evidence as described in Section 
1.  Please comment on the multiple model structure of the Phase 6 nutrient simulation particularly 
to its utility to watershed management in the Chesapeake restoration?  How can the Phase 6 
multiple model approach be improved going forward? 

Overview 
Overall, the review panel as a whole was favorably impressed with the integrated P6 WSM 

framework.  The approach represents an exciting opportunity to leverage multiple modeling and 

ongoing field monitoring efforts to advance adaptive management in ways that should help guide 

CBP decision making, enhance understanding of watershed processes, and ultimately improve 

Bay water quality.  
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Future efforts should continue to focus on recommendations by the Phase 5 WSM review team 

(Band et al. 2008):  to promote development of process-oriented, distributed modeling at the sub-

basin scale.  Importantly, given the limited resources available for research and model 

development, these science-based tools should explicitly address decision making needs while 

also providing a basis to define and explore alternative hypotheses of system dynamics.  

Recommendations  
(a) Provide a more comprehensive introduction to the modeling conceptual design and 

structure, with particular emphasis on describing the features of the new “data-driven” 

approach for the steady state model.  This new approach reflects excellent progress in the 

evolution of the CBP modeling, and is a markedly different approach than the CBP has 

used before.  Therefore, it is important that stakeholders and others understand clearly 

stated rationales and merits of the approach, with an emphasis on the more prominent 

role played by monitoring data.  The CBP should view the opening section of the 

documentation as an opportunity to inform stakeholders and others about this evolution in 

the CBP modeling, consistent with the overall desire for the method to be more 

transparent and for model predictions to be more consistent with observations. 

(b) Clarify the precise role that multiple models play and the structure that is used to 

accommodate multiple models.  For most readers, the reference to multiple models is 

understood to mean multiple independent models are run and the model outcomes 

(predictions) combined in some weighted fashion.  This is not the framework for the CBP 

model.  Therefore, the rationale for the CBP approach, which only combines selected 

components from different models (e.g., several models providing a single point of input 

to the larger watershed model, which results in a single model realization), needs to be 

clarified.  This approach appears to stem from the desire to use a single spatially explicit 

structure, which does readily accommodate the integration of multiple models, but this 

needs to be clearly explained.  The advantages and the tradeoffs of this approach should 

also be made clear.  For example, please discuss why the CBP chose to expand the model 

framework by using the SPARROW (Spatially Referenced Regression On Watersheds) 

model as a basis for estimating the P6 land-to-water delivery and aquatic transport 

components rather than relying solely upon the core HSPF watershed model.  

(c) Cite the results of evaluations of the accuracy of the P6 WSM predictions, process 

components, and input models (e.g., Agricultural Policy Environmental eXtender 

[APEX]; Soil and Water Assessment Tool [SWAT]; Annual Phosphorus Loss Estimator 

[APLE]; and SPARROW) in the first section and present the details of these results in 

other sections, where appropriate.  The shift to a more data-driven modeling approach 

elevates the need for a more comprehensive discussion of model performance and 

diagnostics, with some consideration of how the model uncertainties might affect 

decisions on load allocations.  The assessment should especially examine the spatial bias 

and precision of the model.  
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I. At a minimum, a rigorous skill assessment is needed for the 66 “calibration” sites 

(where long-term records allow the use of the Watershed Regression on Time 

Discharge Season-WRTDS load method).  However, an examination of model 

performance at an additional ~60 sites, which were used to calibrate the 

SPARROW model, would improve understanding of spatial variability in model 

bias and precision that could also inform development of more formal estimates 

of prediction uncertainties.  These sites are likely to require the use of other load 

estimation methods (e.g., Ratio estimator, Loadest) because of their shorter 

records.  A recent USGS comparative analysis of different load estimation 

methods (Lee et al. 2016) should be consulted to determine which methods might 

be best suited for use on shorter records. 

II. To enhance understanding of possible causes of prediction errors, there’s value in 

developing regression-based models of the model prediction errors, with 

explanatory factors related to sources/land use, transport properties, and 

physiography.  For example, there is a particular need to investigate the possible 

causes of the over-predictions in nitrogen that were reported to occur at many of 

the 66 WRTDS sites. 

III. In addition to completing a skill assessment, it would be informative to use Monte 

Carlo analysis to quantify prediction uncertainties related to the errors in model 

parameters and process components, and especially the uncertainties associated 

with BMPs (best management practices), which are likely to be one of the more 

highly uncertain features of the model.  In the future, more sophisticated 

parameter estimation and error assessment (e.g., Bayesian analysis) should be 

used (see below). 

(d) Consider implementing a formal optimization procedure for the next-generation (Phase 7, 

or P7) static watershed model in which the land-use export, land-to-water delivery, and 

aquatic transport components are simultaneously estimated.  One concern with the P6 

WSM procedure is that by performing an upstream sequential extraction of process 

effects on loads, based on using the downstream River Input Monitoring (RIM) loads as a 

constraint or boundary condition, the model doesn’t provide a statistically optimal set of 

predictions for source generation, delivery to streams, and aquatic decay.  The procedure 

treats the downstream monitored loads and the intervening process components (point 

source loads, aquatic decay), which are used to derive the upstream load constraints, as 

essentially error free.  This does not explicitly isolate the model uncertainties, but allows 

the errors to be implicitly included as part of the land-use exports and transport 

components.  A more formal optimization procedure, which would simultaneously 

estimate all of the components, would be desirable for the next-generation (P7) model.  

This would provide a more statistically rigorous method to allocate nutrient mass inputs 

and losses over space, while explicitly accounting for model errors.  While such 



 

11 
 

optimization may be cumbersome for the dynamic model, the static model is well suited 

for application of procedures for estimating parameter and state variable uncertainties 

that account for both input and model uncertainties (e.g., Bayesian estimation).  This 

approach also allows the program to capture the wealth of information (and associated 

uncertainties) generated through the many stakeholder and expert workshops as formal 

priors.  As such, in the future, the CBP should consider calibrating the static model and 

testing impacts with the dynamic model – the reverse of the current approach. 

(e) Consider additional applications of alternative ensemble modeling approaches.  While the 

integration of multiple models is a significant advancement over the Phase 5 approach, 

the review team felt more could be done to leverage the multiple model.  In reality, the 

P6 WSM is not a true multi model (e.g., ensemble) approach but rather a multi-level 

integrated model, with several models providing a single point of input to the larger 

watershed model – resulting in a single model realization.  Instead of averaging the 

multiple outputs from the input models (e.g., APEX, APLE, SPARROW) to provide a 

single input to the larger, watershed model, one could envision the multi-level model 

approach providing an ensemble of end member predictions.  Thus, one recommendation 

would be to use each of the input models to provide a discrete parameter set to the 

watershed model, which would then be run and output predictions made; then the next set 

of input models would run and predictions made, etc.  Together the models provide an 

average prediction, and differences among the predictions can be summarized as a range 

or probability distribution to provide an estimate of the uncertainty in the model average 

prediction.  In addition, or alternatively, a similar ensemble model approach could be 

applied to sub-model components. 

(f) Clarify the logic of the static modeling approach.  While the review team appreciates the 

intent to simplify modeling efforts, we were uncomfortable with organizing and 

describing the static model as a separate, simpler model than the transient model used to 

drive the estuary circulation model.  The results from the complex sub-models in fact 

represent critical components of the static model predictions.  Presenting the management 

model as a summary of the TMDL (Total Maximum Daily Load) simulation seems a 

more tractable and transparent approach than hosting a management vs a TMDL model.  

Of further concern, the static model logic seems circular; first, observed loads at river 

outlets are decomposed to predict land use land cover (LULC)-specific loading rates, but 

then the model structure apparently is applied in reverse to predict river discharge.  This 

may be justifiable if each component is viewed as a “composite” parameter of the overall 

framework, and these back-and-forth adjustments actually describe the calibration 

process.  If this is a correct interpretation, it further highlights a need to reserve a subset 

of the RIM data exclusively for assessing model performance and to consider future 

versions of the static model that employ formal optimization procedures (see (d) above). 
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(g) Provide a more comprehensive assessment of the strengths and weaknesses of individual 

models and how these affect model performance and model prediction.  For example, to 

what extent have input models like APEX and APLE been calibrated and validated for 

the Chesapeake Bay watershed?  Have the impacts of alterations in SPARROW (e.g., 

eliminating some P-related functions (see below)) been tested by recalibration of the 

model to observations?  Some of this would be accomplished by implementing the 

recommendation in (c), above, but additional descriptors of model processes and 

relationships would strengthen the overall section.  Overall, the model descriptions are 

not clear (for the overall model structure as well as sub-model architectures), particularly 

the flow charts attempting to summarize relationships among key model components. 

(h) Organize the documentation according to traditional modeling steps (i.e., conceptual 

model description; model implementation; model calibration; model validation, 

sensitivities, and uncertainties; and model application).  This could enhance 

understanding and transparency significantly.  Note that this is not a suggestion to dive 

deeper into the details of the underlying equations or model parameterizations, which we 

have detailed above; rather, it is a suggestion to enhance communications by organizing 

the text parallel to the modeling process. 

(i) Commit to a process for improving the model’s capability to represent processes of 

particle transport, storage, and reworking in the Chesapeake Bay watershed (perhaps for 

Phase 7).  The current science upon which the P6 is built – as related to watershed-scale 

particle storage, residence times, and time scales for sediment delivery – is still evolving.  

Therefore, management decisions based on the P6 modeling results could be subject to 

future challenges as the research clarifies the dominant processes moving and 

transforming sediments.  See some closely related comments in response to Questions 4 

and 7 below. 

Question 2. Please comment on the scientific rigor of the methods used for the average nutrient 
export rates described in Section 2.  Are they calculated appropriately?  Is there any additional 
scientific information that should be included? 

Overview 
P6 represents a substantial reorganization of the Chesapeake Bay WSM and includes significant 

updates at most steps of the process of assigning loads to individual land uses.  The CBP has 

clearly responded to input from previous reviews, addressing a number of concerns that arise 

from evolving scientific understanding of watershed-scale processes, better approaches to 

simulating nutrient sources and transport, and the availability of new data and models to inform 

the model results.  Although there are some major changes to the way nutrient loads are 

calculated at the finest scales, including the averaging of several model predictions to obtain so-

called sensitivity values, much of the underlying approach to calculating loads builds upon the 

data and routines used in the P5.3.2 model.  Significant updates in the P6 WSM include 
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incorporating the SPARROW model into the calculation of riverine nutrient transport, the use of 

APEX/SWAT from USDA’s Conservation Effects Assessment Program (CEAP) modeling to 

evaluate unit acre loading rates, and the use of APLE to better differentiate between legacy and 

applied P loads in developing sensitivity factors. 

There are numerous issues of clarity in the P6 WSM documentation, and although many were 

rectified by presentations to the review panel, a fundamental rewriting is needed for clarity if this 

document is to serve as an accessible reference.  The clarity of descriptions, especially within 

sub-sections, vary considerably (see prior comments suggesting a revised organizational 

structure.)  Small issues, such as clarifying that “average loads” are actually “average land use 

loads” (or something along those lines) could help to avoid confusion.  Similarly, “land 

simulation targets” has only contextual meaning and is otherwise jargon.  In addition, there is a 

use of the term “fall line” to differentiate the tidal and non-tidal portions of the Coastal Plain that 

is not consistent with applications in the literature where it represents the Coastal Plain/Piedmont 

divide. 

The general approach used in the P6 WSM is to calibrate hybrid models to USGS RIM data for 

large basins above the tidal zone, then to back out the contributions of various processes and 

sources to nutrient loads along river systems until individual land uses are assigned an average 

nutrient export rate at small stream outlets.  This approach balances the availability of data, 

availability of appropriate fate and transport routines, and availability of resources (including 

computational).  Given all of these considerations, as well as the need for simplicity, 

transparency, and consistency, the methods used to calculate nutrient export rates are, for the 

most part, defensible.  Yet there were questions about model circularity as noted in response to 

Question 1.  Again, better and more linear documentation may help to clarify these concerns. 

While there is uncertainty at every stage of the modeling process (from RIM station to small 

stream outlet), some of the larger concerns with past and current approaches involve the 

assignment of nutrient export rates to land use categories at the finest scale of inference followed 

by the derivation of so-called “sensitivity” factors to assess the effect of land management.  

Here, the watershed model is being asked to represent the interactive effects of biogeophysical 

processes and management actions on nutrient export at approximately the county level.  The 

model relies upon increasingly precise and accurate information on land use at this scale, as well 

as nutrient reduction efficiencies from expert panels to predict management contributions to 

nutrient export rates.  These panels generally focus upon field and landscape scale studies that 

are at a much finer scale than the smallest scale of inference used in the watershed model and are 

asked to derive efficiency factors for single practices that are contributing, in combination with 

many other factors, to nutrient export.  

Nutrient loads are first assigned to sectors by averaging estimates from three models (the P5.3.2 

WSM, SPARROW and CEAP’s APEX/SWAT).  Examples of watershed model averaging 

(P5.3.2 WSM, CEAP, SPARROW) show considerable deviation in the sector loads estimated by 

each model.  No evaluation of the appropriateness of each model for this application is provided 
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(e.g., to what extent have APEX/SWAT been calibrated and validated for the range of conditions 

in the Bay watershed?).  Rather, they are all given equal weight.  In the example provided, 

SPARROW substantially underestimates nutrient loads from hay relative to the other models.  A 

critical evaluation of the causes of these differences is needed before simply accepting the 

models as appropriate and weighting them equally.  

Following the assignment of nutrient loads to different land use sectors, nutrient loads are further 

divided into specific land use sub-categories using ratios that quantify deviation from a standard 

(median) loading rate for that sector.  These ratios are provided by expert panels and are largely 

literature-derived.  They are reviewed by the CBP’s modeling workgroup for consistency.  Until 

a more distributed, process-driven approach can be employed by the CBP’s WSM, this coarse 

approach seems to balance issues of data availability and computational parsimony and is 

satisfactory, if not ideal.  However, more could be done to capture and propagate the 

uncertainties imbedded within the assessments by expert panels. 

A notable omission, which is a carryover from previous phases of the WSM, is the inability to 

simulate loads from land in the tidal region.  This leaves significant swaths of the Coastal Plain 

unrepresented in the modeling, including areas that have the greatest hydrologic connectivity to 

the Bay and are most vulnerable to sea level rise.  The model currently assumes that nutrient 

loads from these regions are consistent with those above the tidal zone. 

It seems that RUSLE2 plays a prominent role in estimating P loss from different land 

management categories.  This model, while widely applied, has significant limitations with 

regard to the prediction of sediment loads (and associated phosphorus) from land uses with low 

erosion rates (e.g., pasture, no-till).  Some versions of RUSLE2 (Foster 2013) have been found to 

overestimate soil erosion, especially from pastures.  This overestimation of sediment was due to 

low biomass estimates in RUSLE2 crop management routines (Dabney and Yoder 2012).  

Further concerns regarding the RUSLE2 application are discussed below. 

Recommendations 
(a) The multiple model approach is new to the P6 WSM and therefore warrants the greatest 

scrutiny and reflection.  At a minimum, the variability in model estimates should be used 

as a measure of uncertainty in output.  

(b) An evaluation of model skill is recommended using the RIM station data.  Currently, 

assessments of skill are based upon loads.  It is recommended that model skill is 

evaluated for estimates of watershed discharge and for estimates of nutrient and sediment 

concentrations. 

Specific Comments Regarding Model Documentation 
(a) Consider the number of significant digits to report more carefully.  The panel felt that it is 

not appropriate to report the amount of nutrients lost from an acre of land to the nearest 

1/100 of a pound.  At least round to the nearest pound if not the nearest 10 pounds.  
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(b) Figure 2-1:  Indicate the outcomes of the model process (i.e., what is the arrow pointing 

to?) 

(c) page 2-3, Section 2.2.1/2.2.1.1:  The description of the four adjustments to RIM loads is 

difficult to follow.  Suggested alternative description:  Loads are allocated to LULC with 

consideration of BMP practice effect(s) after adjusting observed loads to account for 1) 

in-stream and river losses; and 2) additions from sources contributing directly to in-

stream loads (e.g., point sources, atmospheric depositions, etc.).  

(d) page 2-4, Section 2.2.1.2:  Why are septic systems not considered a contributor to Non-

Point Source (NPS) pollution? 

(e) page 2-5, Figure 2-4:  Why focus on comparison of regional factors for forests when 

other sectors have a much stronger influence on predicted discharges?  Additional 

explanation of how factors were derived for would be helpful.  

(f) Page 2-7, last paragraph:  Basis for excluding CEAP export rates for developed lands 

requires further explanation.  Its “general assumptions” suggest a simpler model, which 

might actually be better. 

(g) Tables 2-4, 2-5:  Basis for deriving average sector export rates are not clear. 

(h) Table 2-6:  For each sector, highlight the reference/unit LULC class 

(i) Equation 2-4:  1) Where does the 1.2M inches come from?  2) How is the runoff 

estimated?  3) Is there a conversion factor missing (mg to pounds)?  

(j) Table 2-9:  Why differentiate among palustrine wetland types, rather than floodplain vs 

headwater wetlands or other hydrogeomorphic classes?  Similar to forest, consider 

differentiating disturbed vs undisturbed wetlands. 

(k) Table 2-10:  In general, a summary of underlying data rather than references to reports or 

accountings of who did the research would be preferable.  For example, in Table 2-10, in 

addition to the model parameters, indicate the number of studies (including what 

proportion were in the Chesapeake watershed) and the range of reported values. 

(l) Terminology concerns: 

i. Confusing terms:  i) “average load” (rather than loading rate or yield); ii) “target 

load” rather than sector or sub-sector loading rate (because a target most often 

refers to an objective) 

ii. Jargon:  global variable 

iii. Needs additional explanation:  edge-of-?small?-stream, “true” forest, nitrogen 

species (p 2-20) 
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Question 3. In Section 4, how justified are the sensitivities of nutrient export from land uses to 
nutrient inputs, given the approach used and data available?  Do the sensitivities to nutrient inputs 
derived from multiple models reflect our best understanding of the current condition of nutrient 
load processing and attenuation on the landscape?  Is there any additional scientific information 
that should be included? 

Overview 
For the most part, the sensitivities to nutrient inputs derived from multiple models seem to be in 

line with what we think would happen.  There are a couple of instances (as noted below) that 

may or may not make sense. 

In regard to the sensitivities of nutrient export, the approach of using multiple models to develop 

the averages is an improvement from using a single model.  There seems to be confusion in 

whether the section discusses absolute or relative sensitivity, which would clearly make a 

difference when it comes to interpretation.  While the method is improved, relying solely on 

model output without any documentation of calibration and validation of the sub-models raises 

concerns that they may lead to erroneous conclusions. 

Inclusion of “soft data” (e.g., edge of field) for the purpose of verifying the model output would 

be an improvement.  Using this approach, you will not be able to ground-truth every point of 

model output; however, by ground-truthing what you can with available data sources a future 

direction for the modeling can be projected.  If the soft data is in general agreement with the 

group-model output, then one could argue that the models are representative where data are 

available, so (in theory) should also be trustworthy.  If the data sources are outside the bounds of 

the sensitivity projected by the group-modeling output, then it is possible that the observed data 

may shed light on areas in all of the models that need improvement.  As this is being done, the 

uncertainty around the observed data should also be considered, as the measurement techniques 

to collect such data can have great influence on the quality of the data.  While this has been done 

somewhat with the inclusion of work from the CEAP project it would be helpful to have data 

from a specific land use in a specific county (or soils that also happen to be in the Chesapeake 

Bay watershed) that can be used to verify that the model output are fitting observational data. 

Recommendations 
(a) Incorporating “soft data” verification would help lend some validity to the reported 

results, meaning observed data should be used to ensure the sensitivities are at least in the 

ballpark of what is reported.  Using three or four models is preferable to using only one, 

but there needs to be some ground-truthing of as much of the modeling as possible.  

(b) A strong recommendation of assessing the modeled output to local/regional observed 

data at plot to watershed scale will help make the case that the models are working or 

need some improvement in specific areas.  
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Specific Comments Regarding Model Documentation 
(a) There are some inconsistencies throughout the Section 4 draft.  For instance, the caption 

for the equations on P. 4-2 notes “definition of sensitivity and relative sensitivity”.  The 

equations are actually for absolute sensitivity and relative sensitivity.  Throughout much 

of the document, it is difficult to know if it is the relative sensitivity (Sr) or the absolute 

sensitivity (Sa) that is being referred to. 

(b) Page 4-3:  “In Phase 5, a linear sensitivity was assigned to PQUAL and IQUAL such that 

reducing all inputs to zero would result in half the calibrated nutrient load.”  What is the 

logic behind this?  Is this ½ the load to CB or ½ load from land use? 

(c) Page 4-6:  last line before section 4.2.4 cites Figure 4-4… there is no figure 4-4. 

(d) Page 4-8:  “Variability in the APEX values are from scenarios and model versions. 

Variability in the SPARROW output is from model versions found in the literature. 

Variability in the Phase 5.3.2 output is from the different land uses.”  So what is being 

compared here is not exactly ‘apples to apples’. 

(e) Page 4-9:  at the bottom of the page, the units given are pounds export per pounds 

import… so this is absolute sensitivity? 

(f) Tables 4-2 to 4-4:  are these relative or absolute sensitivities?  These seem to ignore 

absolute sensitivities.  The does not seem to make sense – atmospheric deposition is more 

sensitive in an [ag]riculture landscape for the sum of N species than on an impervious 

surface.  This signal is likely overwhelmed in agricultural landscapes. 

(g) Figure 4-8:  The caption mentioned the plot is for “tree canopy over scrub shrub land 

use.”  The panel thought that this land use was deleted. 

(h) Figure 4-11:  what does the x-axis represent on the top graph?  What kind of sensitivity? 

(i) Page 4-15:  is fertilizer really the dominant nutrient source on conventional till with 

manure land uses? 

Question 4. Please comment on the scientific rigor of the methods used in the use of Spatially 
Referenced Regression On Watersheds (SPARROW) for land to water factors in Section 7.  Are they 
reasonably implemented?  Is there any additional scientific information that should be included? 

Overview 
The land use steady state SPARROW model described here provides a useful modeling structure 

to inform estimation of the source and transport (terrestrial and aquatic) components of the newly 

developed steady state P6 WSM.  The spatially explicit properties of SPARROW are generally 

well-suited for the P6 WSM approach, which like SPARROW separates nutrient source 

generation from terrestrial and aquatic process effects on transport.  The development of land-use 

based sources in the SPARROW model, rather than the mass-based sources that are commonly 

used, is reasonable to ensure consistency with the overall P6 WSM concepts that emphasize the 
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use of land-use export coefficients from multiple watershed models.  The SPARROW land-to-

water delivery factors in the P6 WSM should provide an acceptable representation of the major 

factors that explain the long-term average transport and storage (and loss) of nutrients along 

surficial and sub-surface flow paths across many Chesapeake Bay watersheds (although see 

comments in ‘b’ below).  The area-weighted averaging of the SPARROW land-to-water factors 

within the catchments of the ~2300 river segments in the P6 WSM will greatly reduce the spatial 

variability in these factors, but provides a reasonable method to link the two different spatial 

scales present in these models.  

The central role that SPARROW now plays in quantifying terrestrial and aquatic transport in the 

steady state P6 WSM, based on a modified version of a recent USGS model (Ator et al. 2011), 

underscores the need for the documentation to more clearly describe the details of the methods 

and performance of the new SPARROW model.  Evaluations of the model structure and 

performance should include the following.  First, owing to the change in the structure of the 

source component (shifting to land use from mass inputs), the possible influence of additional 

land-water delivery factors should be evaluated as part of the model development phase (the 

extent to which other factors were examined is unclear, including whether other functions, such 

as continuous in-stream decay, were tried).  Second, information about model performance (e.g., 

Root Mean Square Error-RMSE, yield, r2, etc.) and residual diagnostics should be reported and 

discussed.  Of particular importance is a careful review and reporting of the spatial biases in the 

predictions, which are available for approximately 180 calibration monitoring sites.  Spatial 

biases that are observed at this stage will be important to consider in relation to those observed 

for the full model, which is currently evaluated for only about 60 Chesapeake Bay monitoring 

sites with the longest records.  

For the phosphorus delivery factor, several statistically significant variables (erodibility, Coastal 

Plain, and precipitation) were eliminated from the SPARROW P model to avoid potential 

redundancies with the APLE model, which was reported to include similar properties.  However, 

because of the multiplicative interaction between the sources and land-to-water transport factors 

in SPARROW, the elimination of important variables without recalibration of the model would 

be expected to introduce biases to the model predictions, and is an unconventional approach.  

Thus, it would be informative to evaluate the extent of correlation in the explanatory variables 

for these factors in the two models (SPARROW and APLE) to determine the extent to which the 

eliminated factors are accounted for by the other model terms.  

During the discussions, concerns were raised about the applicability of the Index of Connectivity 

(IC) to estimation of sediment delivery from Bay watersheds in view of the limited prior testing 

of this predictive measure by Cavalli et al. (2013).  Questions also centered on whether the 

spatial variability in IC makes physical sense.  The P6 WSM documentation should explain the 

physical basis for the IC metric.  Furthermore, an effort should be made to justify why the 

metric, originally developed in high relief, small drainage basins of Switzerland, is actually 

appropriate for use in the Chesapeake Bay watershed.  Data should be cited that test the 
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effectiveness of the IC in the Chesapeake Bay watershed, if any exists (we assume that no real 

evaluations are available).  The observations spatial patterns of the IC, for example, might be 

correlated with various watershed properties in a reasonable way.  Lacking this information, 

however, the use of the IC seems rather ad hoc, and poorly justified scientifically (i.e., untested 

by observations in the watershed). 

Recommendations 
Short term Recommendations: 

(a) Improved evaluations are needed of the SPARROW model performance and diagnostics. 

(b) Document specific values of the sediment delivery ratios used in the model, and explain 

to the reader what these values imply conceptually for sediment movement in the 

watershed.  Document geographic variation in sediment delivery ratios and justify 

patterns in terms of watershed characteristics.  

Long-term Recommendations (See also Question 11.): 

(a) Additional evaluations are needed of the sediment components, such as IC.  Data should 

be obtained justifying the use of this metric, which appears to have been developed for 

conditions very different from the Chesapeake Bay.  Its use presently is an extrapolation 

without support of local data and results are likely to have high uncertainty.  Further 

validation is needed. 

(b) The conceptual basis for the entire sediment modeling approach requires further 

investigation in preparation for the next phase of the watershed model.  The basic idea in 

this model is that sediment is generated from uplands, some of it is stored on the 

landscape between this upland source and its delivery to small streams, and additional 

source/sink terms (bank erosion and floodplain deposition) are included for small 

streams, but not for larger streams.  The sediment delivery ratio approach reflects this 

conceptual framework, but the evidence that the watershed really works this way does not 

have a strong empirical foundation (i.e., the data supporting it is not extensive).  Other 

sources and sinks should be considered; while some scientists believe upland sources are 

not important, others consider them very important.  Rills and gullies often represent 

incision of the upland landscape and headward extension of the drainage network, either 

ephemeral or more permanent, and these may be important sources as we discuss in 

response to Question 7.  If sediment is important to model, then the scientific foundation 

for doing so really needs to be improved.  

Specific Comments Regarding Model Documentation 
(a) Given that the introduction to SPARROW in Section 7 (Equation 7-1) applies to both 

Sections 2, 7, and 9, this material might be more appropriate to locate in the introduction 

(Section 1), where a more comprehensive treatment could be given to the overall model 

concepts.  The material also might be located within a section that provides an 

introduction and background for the three modeling approaches that are used for P6.  
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(b) Table 7-1:  The text should indicate that the transport processes for land-to-water delivery 

are inclusive of selected groundwater effects for nitrogen.  This table also includes an 

overview of transport processes that operate at all scales within the Chesapeake Bay.  It is 

therefore more important to the documentation than simply to provide an explanation for 

the land-to-water factors.  It should be introduced early in the documentation, and its 

conceptual basis should be explained and justified. 

(c) Equation 7-4 should be assigned to the area-weighted equation on p. 7-7, which is 

missing an equation number. 

(d) Fig. 7-1 of the river and stream segments needs more explanation because there was 

some initial confusion about the spatial domain for the P6 river catchments; displaying 

these watershed-river segment boundaries may be helpful.  In particular, the figure 

capture should contain specific details describing what the figure illustrates.  For 

example, the yellow shaded area should be identified and explained (the brief acronyms 

in the legend are not really comprehensible).  The more detailed “brownish” catchment 

boundaries should also be explained – why are these included?  They are not defined in 

the legend.  

(e) The documentation should include a chapter on uncertainty and risk analysis.  The 

greatest uncertainty for sediment is that the conceptual basis for the model is not well 

supported by observational data, and this creates a significant risk associated with using 

the model for management decisions. 

(f) In Section 7.3.1.2 (of the provided model documentation) on ‘feeding space’, losses of 

30% for N and 90% for P are assumed for the nutrient transport to streams rather than 

using the SPARROW land-to-water delivery factors.  Therefore, notation should be 

added to Table 7-4 to indicate that land-to-water delivery interactions with the pasture 

land-use source were not allowed in the specification (it’s also worth checking that this 

specification was used by USGS in the updated SPARROW calibrations).  

(g) In regard to Section 7.4:  This section notes that Sediment Delivery Ratios are a common 

concept in sediment modeling.  While this is likely true, it does not necessarily provide 

much confidence in this aspect of the modeling approach.  The available data regarding 

how sediment moves from upland landscapes to hillslopes to small streams in the 

Chesapeake Bay watershed is very limited.  The conceptual basis for the sediment 

delivery approach is not well verified in the Chesapeake Bay region.  The documentation 

provided is very sparse, and in fact almost nothing is said about what specific values of 

sediment delivery ratios are used or how they vary geographically.  This part of the 

modeling approach is poorly documented. 
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Question 5. Please comment on the overall appropriateness of the methods used in the application 
of multiple methods to estimate stream-to-river factors for nutrients in Section 9?  Is there 
additional scientific information that should be included? 

Overview 
In the P6 WSM, the finer scale of National Hydrography Dataset Plus (NHDplus) catchments is 

used to generate loads to the edge of small streams, compared to the much coarser Land-River-

Segmentation (LRS) used in the P5 WSM.  The in-stream losses in these smaller streams prior to 

loading in the river segments are computed using different methods derived from the NHDplus 

SPARROW models for nitrogen and phosphorus.  Methods to estimate sediment loss or 

additions at the small stream level are currently being developed by the USGS and by the Center 

for Watershed Protection but are not yet incorporated into the P6 WSM. 

The nitrogen and phosphorus small stream (NHDplus stream) decay are modified from an 

approach taken by Hoos and McMahon (2009) that was applied to the land-to-water (L2W) 

delivery, differentiating among the nutrient sources.  This approach computes a sector mean 

delivery, but then differentiates rates at the catchment level based on Delivery Variance Factors 

(DVF) to increase or decrease decay rates based on local conditions.  Similarly, in the P6 WSM, 

Stream-to-River (S2R) factors, developed in the NHDplus SPARROW model were used, and 

calculated by general sector category (crop, pasture, developed and natural land).  

Documentation needs to be improved as the equations on p. 9-2, of the supplied model 

documentation, do not appear to include sector specific S2R (the S2R on the right hand side of 

equation 9-2 are not indexed by sector), but figures 9-3 through 9-10 show sector specific S2R 

values for each Land-River Segment.  It is not clear why the sector source of nutrients in the 

stream are differentiated with S2R, as it is presumed the NHDplus reaches are well mixed, and 

there is no reason to expect nitrogen or phosphorus from different sectors would be processed 

differently, unless it is dependent on speciation from different sources, or by the location of 

edge-of-small stream delivery within the LRS.  In this latter case, it may be that a sector nutrient 

delivery may be in a specific upstream or downstream location in the LRS, and so subject to a 

greater period of in-stream decay.  This should be more clearly described.  Note that the 

NHDplus-scale SPARROW model developed by Ator et al (2011) does not provide sector 

specific decay rates in the aquatic phase; rather, the first-order rate constants vary according to 

stream size (i.e., mean discharge). 

The method developed by the Center for Watershed Protection, limited to urban catchments, is 

based on estimating Stream Source Ratios (SSR) to differentiate between upland and in channel 

sources in urban catchments.  The SSR is based on the development of a dataset of upland 

derived and total loads within a watershed for which total sediment delivery can be estimated 

using a regression model that predicts SSR as a function of available watershed characteristics.  

This information can then be used to apportion total load to upland and in-stream sources.  A 

small data set of nine urban watersheds was used for which gauge data of flow levels were 

available.  
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Upland sediment load estimates are based on an EMC (Event Mean Concentration) estimated 

from measurements for storm sewer outfalls available from the National Stormwater Quality 

Database for the county of the LRS.  Hourly flows were taken from P5.3.2 simulations.  In this 

case, EMCs were taken as constants for a county, based on nearest sampled watershed.  The 

errors of these estimates are not described in the documentation, providing no estimates of 

uncertainty.  The method assumes no deposition, so that integrated loads are not balanced or 

reduced by loss rates in the small urban streams.  

For total loads, EMCs on an event basis are co-located with gauged flow measurements.  A load-

discharge power function relationship for each gauge is then integrated over hourly flow.  It is 

important to note that while the estimates of the upland loads use a constant EMC, the total loads 

are estimated with an EMC-discharge relationship, which may result in some discharge weighted 

bias of the SSR.  The final regression model predicting SSR is a function of the Hydrologic Soil 

Group C/D soil and impervious surface proportions.  As the estimates of SSR from regression 

can be below zero or greater than one for some feasible combinations of C/D soil and impervious 

proportions, SSR’s are arbitrarily bounded between 0.05 and 0.95.  

Recommendations  
(a) This method is strongly limited by available data, as well as potential inconsistencies and 

high uncertainty in the estimate of upland and total loads.  The results of an uncertainty 

analysis should be reported based on sources of error for the loads and the SSR, as well 

as an analysis of spatial patterns.  If it is possible to test the model with independent 

observations of in stream derived loads, as an example from the data sets of Noe et al 

(2015a,b),  that could provide diagnostics for refining and building more confidence in 

the methods.  

Question 6. Please comment on the scientific appropriateness of the approach taken for Phase 6 
lag times described in Section 10 given the current state of information and understanding of 
groundwater and particulate processes.  How can the structure and processes of nutrient lag time 
simulation on the land be improved in Phase 6 or future watershed model applications?  Is the 
application of the Ranked Storage Selection (rSAS) function for groundwater nitrate and Unit 
Nutrient Export Curves (UNEC) for all other nutrient species appropriate for the management 
questions? 

Overview 
Reviewers felt that it was not reasonable or efficient to address the issue of lag time for dissolved 

species (where delays occur primarily in groundwater) at the same time as addressing lag times 

for particulate materials (where delays are predominantly on land surfaces, on banks, and in 

beds), since the processes and pathways are completely different.  In this regard, issues of 

particulate processes are discussed above under question 4 and below under question 7.  Hence, 

the remainder of reviewer response to this question relates to lag-time modeling for dissolved 

species. 
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The CBP modelers have presented new methods they are using in the P6 WSM for calculating 

nutrient loads based on transit times.  These approaches are based on recently published 

literature and appear to be a promising improvement over approaches used in Phase 5 for load 

calculations.  Given that a great deal of thought and discussion have gone into the new 

calculations and the approach appears to have merit, the panel recommends that this trajectory 

should continue to be pursued in the P6 WSM with caveats discussed below.  If, as additional 

new approaches come to light, the CBP can consider adopting them.  

Question 6 addresses whether the application of the Ranked Storage Selection (rSAS) function 

for groundwater nitrate is appropriate for addressing management questions, but no definition of 

rSAS or reference to the literature is provided in Section 10 of the provided model 

documentation.  Section 10.1.2.2.2 states that “UNEC and rSAS use the water and sediment 

fluxes along with the nutrient inputs to calculate nutrient budgets for the land uses.  Parameters 

for transit time distribution of nutrients are provided as inputs for both UNEC and rSAS based on 

estimates of lag times that include models and other lines of evidence”.  This brief description of 

how this routine is used does not provide any information of what calculations rSAS actually 

does.  In Section 10.1.2.1, the reader is referred to Section 5.2 for a definition of rSAS; Section 

10.5.2 provides the following definition of rSAS:  “Ranked Storage Selection (rSAS) is an 

approach to simulate transient response of the system.  The model was used to simulate response 

for the groundwater nitrate.  Operational details were worked out over the Beta 2 development 

phase.  A full application will be made available for review with the Beta 3 phase.”  There is no 

further mention of rSAS in Section 10 and thus makes review of this algorithm impossible based 

on the written material provided.  

However, to complement the written documentation, the description of the basis of rSAS was 

presented in a briefing to the panel, and although not explicitly mentioned on the slides, the panel 

was told this concept is based on the work of Harman and others.  Harman’s work has been 

published in Water Resources Research (Harman 2015) and is generally viewed by the scientific 

community to be a robust, novel, and elegant approach to evaluating watershed transit times.  

The CBP modelers have gone to great lengths to try to parameterize the rSAS method with a 

number of published data sets and results from other groundwater models.  This is meritorious; 

however, the approach needs to be better documented to stand up to public scrutiny. 

Furthermore, it is not clear that the rSAS approach has been validated in conditions similar to the 

Chesapeake Bay watershed, as the original publications evaluate data collected from watershed 

in Ireland.   

Whereas the rSAS approach is used for simulating nitrate transit times, a new “Unit Nutrient 

Export Curves” (UNEC) approach is being used to simulate transport paths for other species 

(other nitrogen species; phosphorus species).  For UNEC, some description of the conceptual and 

computational basis of UNEC is provided in Section 10 of the P6 WSM documentation.  The 

model is based on previously published approaches used in EPA Q-TRACER.  The idea behind 

the UNEC is that a unit pulse of nutrient application is defined to have an associated empirical 
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concentration response function (breakthrough concentration curve) that characterizes travel time 

distribution relevant for the location on the landscape to which the nutrient pulse is applied.  To 

obtain a load time series, a time series of unit (pulse) nutrient applications is specified, a 

composite concentration response function is constructed by adding together the time series of 

unit concentration response functions, and a final load function is created by multiplying the 

composite concentration response function by simulated flow.  

Details on how UNEC model parameters are chosen are not provided.  However, evidence of 

model performance is provided by comparing aggregated monthly model output with USGS 

WRTDS-calculated loads.  The comparisons show a significant improvement over comparisons 

of the same data with P5.3.2 WSM output.  For total nitrogen, the modeled load output is in 

agreement with about 87% of USGS WRTDS data using the P6 UNEC approach compared to a 

67% agreement for P5.3.2 WSM.  In addition, the spread about the median value in the box-plot 

comparison is greatly reduced for the P6 WSM compared to P5.3.2 WSM.  Whereas improved 

agreement of model output with observational data is documented, it is difficult to prove that this 

is due to the new method for calculating loads.  However, because other components of the 

model have not changed much since P5.3.2 WSM, it is reasonable to assume that the 

improvement agreement in model output with data results from implementation of UNEC.  

Although there could be criticisms in the use of UNEC owing to the empirical nature of the 

parameterization, the logical basis for the approach is sound and appears to be an improved path 

forward to calculating loads using the modeling structure.  The panel therefore feels that the 

approach is reasonable. 

An overarching concern of the CBP WSM especially relevant to understanding lag times is its 

intent to generalize hydrologic processes across the entire Bay watershed.  Clearly, the fate and 

transport of excess nutrients and sediment strongly depends on the physiographic province and 

the hydrologic connectivity between a ‘contaminant’ source and downstream waterbody.  

Numerous reports provide general descriptions of how the geology in each province uniquely 

influences surface- and ground-water interactions.  While model segmentation and application 

may capture related effects explicitly, the model structure abandons a key opportunity to explore 

how this set of factors influence land management effects.  The lag time model component 

provides a prime opportunity to capture this key set of factors.  

Sanford and Pope (2013) note two other important considerations:   

 Due to the significant influence of hydrologic connectivity on ground- and surface-water 

exchange, stream network length and distribution likely influence groundwater transport lag 

times.  This may be especially critical to consider when evaluating effects of seasonal and 

climate change in addition to drainage/land use management (de Wit and Stankiewicz 2006). 

 Extremely flat areas, such as the outer Coastal Plain lowlands, have relatively long (>300 

years) residence time.  This contradicts assumptions/predicted data presented in Figure 10-

27.  
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Recommendations 
Rather than solely using the lag time models to adjust load estimates, additional post-processing 

of results also could address the following key questions of concern:  1) What is the status of 

‘legacy’ nitrate in our groundwater systems?  Where does long-term groundwater storage and 

discharge possibly outweigh impacts from current land management practices and thus limit the 

response of down-gradient ecosystems?  2) Does our understanding of lag-times suggest where 

or which areas of the landscape might be more critical to manage for water quality concerns?  

For example, are there highly leachable areas (i.e., with no lag-times) that perhaps also incur 

excessive fertilizer applications (because so much is lost)?  These questions provide exciting 

examples of how data from the CBP WSM can be used beyond evaluating TMDL obtainment, to 

support management decisions directly. 

Question 7. Please comment on the scientific rigor of the methods used in the Phase 6 sediment 
simulation components using a detailed Revised Universal Soil Loss Equation 2 (RUSLE2) (Section 2), 
an interconnectivity metric (Section 7), and the inclusion of sediment source/sink estimates from 
stream banks and flood plains (Section 9). 

Overview 
The conceptual framework for the sediment modeling assumes that sediment is primarily 

produced from erosion of upland soils (hence the use of RUSLE2), and routed to small streams 

with some storage accounted for by the Interconnectivity (IC) Metric and sediment delivery 

ratios.  Along small streams, some sediment is stored in floodplains and additional sediment is 

generated by bank erosion.  Sediment that reaches large streams is transported downstream to the 

Chesapeake Bay.  There is no accounting for the distribution of lag-times, which ideally should 

be evaluated in relation to sediment texture.  

Our comments first address the strengths and weaknesses of each of the three components 

(RUSLE2, the Interconnectivity Metric, and the streambank/floodplain source/sink estimates) 

followed by more general comments and recommendations.  

RUSLE2:  Although it is not entirely clear from the documentation provided, it seems more 

appropriate to describe the P6 WSM hillslope erosion model as a method to disaggregate average 

annual erosion RUSLE estimates to more of an event-based time-scale rather than using RUSLE 

estimates as calibration targets.  The latter implies adjusting model parameters to known values, 

which absolutely is not true.  At best, RUSLE estimates can be considered as qualitative 

indicators of where soil erosion may impose greatest impact on in-stream suspended sediment 

loads (Wu et al. 2005). 

Numerous publications highlight concerns regarding watershed-scaled, USLE-based raster 

applications (e.g., Boomer et al. 2004), providing strong evidence that such estimates should not 

be used as model calibration data.  For one, the mismatch between the field design upon which 

the USLE is based and the raster-based implementation raises significant concerns with model 

implementation.  More importantly, there is increasing evidence to suggest that hillslope and rill 
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erosion often play a relatively minor role in regulating sediment transport at the watershed-scale, 

compared to impacts from gully and scour erosion, as well as instream deposition (De Vente et 

al. 2013) and sediment remobilization.  Indeed, pinpointing these small-scale point sources and 

sinks (i.e., precision conservation) may provide important means to managing downstream water 

quality (e.g., Tomer et al. 2013; see response to question 8).  Accordingly, the reliance on 

RUSLE to generate calibration data presents major concerns, both from a 

mechanical/implementation and conceptual basis. 

If RUSLE estimates essentially are model endpoints (starting points?) that were disaggregated to 

a finer timescale, rather than calibration endpoints, this alleviates some concern about the 

RUSLE usage in the current sediment simulation framework, especially given the lack of 

tractable alternatives.  This also could explain the near perfect (and highly suspect) correlation 

presented in Figure 10-26.  In defense of RUSLE, the model remains conceptually sound at the 

small field scale, and it still is considered best available sediment modeling technology to 

identify areas with relatively greater risk for erosion.  Especially notable, for example, is the 

current scarcity of quality data and associated scientific approach for properly representing gully 

erosion and scour.  The qualitative evaluation and forcibly incomplete representation of other 

sediment transport processes in the CBP P6 WSM, do however, raise major concerns about the 

accuracy and precision of sediment simulation.  The data and science are continuing to evolve in 

these regards, and the CBP should commit to updating the P7 WSM as new data become 

available. 

In addition to the overarching concern of how RUSLE is being used within the model CBP 

model structure, the review panel shared concerns regarding the limited description of RUSLE 

parameters.  For example, adjustment factors listed in Table 2-19 report categories that were not 

evaluated in the original, empirical research (e.g., roads); such assumptions require 

documentation outlining which and how information was combined for use within the RUSLE 

framework.  

IC Metric:  The Interconnectivity (IC) Metric raises many questions.  First, it is based on a 

method that was developed for use in small mountain watersheds in the Alps, which have 

complex histories of glacial erosion and very different surficial materials and topographic 

patterns and spatial scales by comparison with locations in the Chesapeake Bay watershed.  

These watersheds as illustrated in the original paper drain across alluvial fans at their 

downstream ends.  Whether results derived from these watersheds are transferable to a very 

different landscape in the Chesapeake Bay watershed is, at a minimum, open to question.  The 

logic of the paper seems reasonable and no claim is made against or for the method itself.  

Although there may be a project currently underway to assess its broader applicability, the 

review panel is concerned about justifying results derived for locations throughout the 

Chesapeake Bay watershed on a method whose applicability has not been demonstrated.  

From what the panel can see, the direct application of the method generates values that are well 

outside the anticipated range, which required adjustment and rescaling.  The panel was 
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somewhat alarmed by presentation to the panel stating:  “Need to convert to scale of 0 to 1 with 

an average of 0.25; distribution looks reasonable, so assume linear translation.”  With a large 

enough data set, it is not particularly surprising that the distribution of IC scores appears 

normally distributed; beyond that, all of the adjustments are based on other considerations and it 

is not clear how the Cavalli et al. (2013) method really informs what was done.  Essentially the 

data have been massaged enough to generate sediment delivery ratios that are helpful in 

matching values recorded by the WRTDS stations, but that does not tell us whether the method is 

applicable here.  If it is indeed applied in the P6 WSM, we would recommend attaching an 

asterisk to its use indicating that the validity of the approach needs further study and that other 

approaches will be examined in planning for P7. 

Stream banks and floodplains:  The USGS floodplain network regression models are 

anticipated to be applied to account for exchange between streams and floodplains.  One of the 

two documents cited for Noe et al. (2015b) is a seminar presentation that is available online and 

is clearly work in progress with an ambitious agenda to generate regression results for 

application across different physiographic provinces and across the entire Chesapeake Bay 

watershed.  The availability of field measurements at a network of sites is helpful; this is 

supplemented with data extracted from light detection and ranging (LiDAR) to characterize 

channel and floodplain geomorphology.  We have not assessed the validity of the tools, the 

output or the conclusions being drawn and therefore we are not in a position to make any strong 

recommendations about their use at this point other than to say that the availability of empirical 

data represents a significant advance and these data should be incorporated into the modeling 

framework.  If sufficient information is collected to develop robust regression models, this may 

be a useful method of estimating sediment loss or gain in small streams as fine scale LiDAR and 

spectral imagery is developed to represent channel geomorphology and land cover conditions for 

the independent regression variables.  It is important that the results of this analysis be qualified 

as a minimum rate of deposition and erosion, as the initial depth of roots below the soil surface is 

likely not known.  Clearly there is exchange between the channel and the floodplain, the 

floodplain has the ability to serve as an important storage reservoir, and the related processes will 

influence fluxes and time lags at the watershed scale.  

The regression approach used to predict floodplain exchange has some strengths, but also has 

two significant limitations.  One is related to the variables used for the regression model.  These 

are geomorphic variables and watershed characteristics; they may be useful for predicting 

floodplain processes as they currently operate, but are insufficient to assess future changes.  How 

might changing flow frequency or sediment supply affect floodplain exchange?  Relevant 

variables are not included.  The second limitation is the lack of temporal component to the 

approach.  Floodplain storage encompasses long timescales that need to be explicitly considered 

in watershed scale sediment routing schemes.  We hope that these components can be 

incorporated into the modeling framework, if not for the P6 WSM then potentially for P7. 
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Summary:  The panel had serious scientific questions regarding the conceptual framework used 

in the P6 WSM sediment modeling.  First, observational evidence linking upland soils to 

downstream sediment delivery is weak; some studies suggest that other sources (e.g., gully and 

stream bank erosion) may be more important than upland soil erosion.  These processes are not 

directly included in the modeling effort.  Second, sediment storage (particularly on floodplains) 

imposes long timescales (centuries!) on sediment delivery processes that are not accounted for in 

regression-based estimates of floodplain exchange.  Long storage timescales might be neglected 

when processes are approximately “steady”, but the entire point of a management model is to 

predict and evaluate changing conditions.  Furthermore, the long distribution of timescales for 

sediment delivery, encompassing days to centuries, is not consistent with the use of steady state 

framework for modeling management decisions in the Chesapeake Bay watershed.  The 

timescales required to reach a steady-state sediment delivery are much longer than any timescale 

envisioned for management decisions, so the steady-state condition isn’t really relevant.  What 

the model needs to address is the extent of sediment delivery following management actions 

within a reasonable time frame, recognizing that steady-state conditions may not be achieved.   

Recommendations 
(a) In the short-term (P6), little can be accomplished towards improving the sediment 

modeling approach – too many changes are needed, especially given the amount of time 

available.  Over the longer term (P7), new model structures should be created that 

account for the variety of potential sediment sources in the watershed and the wide 

distribution of timescales for sediment delivery.  A coordinated modeling and field 

research program will be needed to support such an effort.  Current scientific 

understanding is not sufficient to accurately quantify the relevant processes, for example, 

to make predictions of lag times and delivery rates for sediments at the watershed scale 

with a reasonable degree of confidence. Therefore the P6 modeling approach should be 

regarded as an interim solution with the expectation that improved scientific 

understanding will allow a more comprehensive approach in P7. 

Furthermore, although there is a strong incentive to rely on fall line gaging station 

measurements of sediment flux as calibration targets, matching calibration targets at the 

mouth of the watershed for existing conditions does not guarantee that management 

activities at specific locations upstream will be successful in achieving their stated goals.  

New approaches should seek to capture the most important sediment sources at 

distributed locations throughout the watershed and to incorporate new research results on 

timescales and intensity of sediment exchange processes.  
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Question 8.  Given the fine scale 1m x 1m land use data that’s used in Phase 6, what opportunities 
does this open to the CBP and scientific community in the next phase of watershed model 
development?  What are the advantages in a distributed representation of hydrology, land cover, 
and sediment?  Given the availability of nutrient inputs from Agricultural Censes at the county scale 
only does a higher resolution of the watershed model make sense? 

Overview 
With one exception, the panel does not recommend using high resolution products to advance the 

CBP-HSPF component but rather to embrace the utility of these data in developing sub-models 

that can inform our understanding of system processes and provide critical information to 

stakeholders, in particular to drive management decisions.  Especially given the costs in terms of 

processing time, it is essential to report that high resolution land use and topography data, finer 

than 10 m resolution, appear to provide limited benefits to improving discharge predictions 

generated by regional watershed models (Zhang and Montgomery 1994, De Vente and Poesen 

2005, Bormann et al. 2009, Yang et al. 2014).  While the digital elevation model (DEM) grid 

size and vertical accuracy influence hydrologic modeling performance, model calibrations likely 

compensate for this effect due to interactions between model parameters and spatial factors (Wu 

et al. 2008).  The current relatively coarse resolution of soils, bedrock, and surficial geology 

maps likely also limit the utility of detailed data in a watershed modeling context.  High 

resolution weather data presents an exception; specifically, precipitation data finer than 1 km 

grid, hourly measures has potential to improve watershed model predictions significantly 

(Bormann et al. 2009). 

Detailed topography and land use/land cover data, however, provide great promise to advancing 

process-based, distributed models at a spatial-scale relevant to identifying where land use/land 

management practices impose the greatest impact (and present the greatest opportunity) to 

downstream water quality (e.g., as a downscaling model or as a sub-model to the overarching 

CBP model framework).  While limited access to comparable high-resolution information on 

agricultural practices will remain a constraint, application of high resolution data to mapping 

terrain characteristics more accurately has shown value, including watershed boundaries and 

stream networks (Yang et al. 2014).  Additional applications show that detailed data can be used 

successfully to map surface processes including field erosion (Verachtert et al. 2010), gully 

formation (Momm et al. 2011), channel head migration (James et al. 2007; Tarolli and Fontana 

2009), in- and near-stream incision and deposition (Thoma et al. 2005, Notebaert et al. 2009, 

Walter and Merritts 2008), and wetland function (Murphy et al. 2007, 2009; Rayburg et al. 2009, 

Richardson et al. 2010).  Further, spatially explicit predictions of biogeochemical processes 

present an exciting opportunity to link field research and modeling efforts, especially if designed 

to evaluate/investigate alternative models of predominant system drivers (e.g., verifying 

variation in field-scaled predictions of evapotranspiration, which also could provide critical 

information to improving regional watershed models).  
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Recommendations 
(a) Identification of field-scaled opportunities to install practices which will provide the 

greatest water quality (and habitat) benefits at the least cost remains one of the most 

frequently-cited information needs among state and federal outreach agents, county 

planners, and restoration managers.  High resolution land-use data combined with other 

more detailed information, such as LiDAR-derived topography data, present exciting 

opportunities to address this information gap.  Rather than using these data as input for 

the HSPF-based framework, the CBP should encourage the development of sub-models 

that attempt to down-scale the watershed models while also exploring process-based 

mechanisms affecting downstream habitat conditions.  

Question 9. Better simulation of the deposition and scour processes in the reservoir reach of the 
Lower Susquehanna is an important feature of the Phase 6 Model.  It is crucial to 2017 Midpoint 
Assessment decision making to be able to represent the net deposition of sediment, nitrogen, and 
phosphorus in this reach of the Susquehanna as fully as possible.  Does the Phase 6 representation 
of the dynamics of the reservoir system rely on the best science available at this time? Do the 
simulations approximately represent the observed changes in storage of sediment, nitrogen and 
phosphorus as seen in the historical record from the last few decades? How can the representation 
of Conowingo infill be improved going forward beyond the Phase 6 Model? 

Overview 
The CBP modelers have presented revised methods being used in the P6 WSM for calculating 

particulate organic and sediment loads from the Lower Susquehanna River Reservoir System 

(LSRRS), including Lake Clarke (Safe Harbor Dam), Lake Aldred (Holtwood Dam) and the 

Conowingo Pool (Conowingo Dam).  The Susquehanna contributes 41 percent of the nitrogen, 

25 percent of the phosphorus, and 27 percent of the suspended sediment to the tidal Bay (Linker 

et al., 2016b).  However, the infilling has altered the solids retention capacity and nutrient 

trapping efficiency of the reservoirs over time, which has management implications and 

necessitated revision of the WSM. 

The CBP modeling revisions were, in part, based on recommendations of the STAC Conowingo 

workshop (Linker et al., 2016a).  The workshop resulted in nine issues (five recommendations 

and four questions), which were broadly summarized in the August 18, 2016 STAC letter to the 

CBP Management Board as: 

1. Efforts to model the effects of Conowingo on net accumulation or release of nutrients and 

sediment from the reservoir should be evaluated based on its ability to “hindcast” data 

from water quality observations and statistical analyses. 

2. Address biogeochemical processes related to sediment scour and nutrient cycling that 

may influence bioavailability in reservoir sediments, under variable flow ranges in the 

Conowingo Reservoir. 
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3. Ensure representation of effects of Conowingo inputs to Chesapeake Bay for the full 

range of flow conditions including ‘extreme’ high-flow events. 

4. Improve representation of reactivity of particulate organic matter in Conowingo outflow. 

5. Moving forward, an effort should be made to link the sediment transport and 

biogeochemical models in the 2010 Water Quality and Sediment Transport Model 

(WQSTM) to enhance modeling of the transport and fate of organic nutrients in the tidal 

Bay. 

In addition, the CBP modelers addressed questions from the CBP Modeling Workgroup 

(February and April 2017) identified as necessary to be resolved in order to calibrate the P6 

WSM and address management questions: 

1. What is the current state of the Conowingo and the two upper reservoirs with regard to 

long- term mass balance? 

2. What information can be used to estimate the change in scour and deposition over time 

for the purposes of calibration? 

3. Does the trapping efficiency change with different levels of nutrient inputs? 

4. How does the availability of organics change with respect to flow? 

General Review Comments 
The P6 WSM of the LSRRS as described is supported by observations and directly informed by 

complementary modeling studies including the application of WRTDS and modeling of LSRRS 

sediment and nutrient processes as part of the "LSRRS Model Enhancements" project by Exelon.  

The Exelon project included the application of an unsteady-flow HEC-RAS model developed by 

WEST Consultants and Gomez and Sullivan (GSE) Development of a HEC-RAS model and 

applied from Marietta, PA to Holtwood Dam.  The LSRRS enhancement project also included 

the development and application of a coupled hydrodynamic sediment transport model (ECOM-

SED) to Conowingo Pond and development of the Conowingo Pond Mass Balance Model 

(CPMBM) by HDR and GSE.  The CPMBM also included a sediment flux model which is 

basically the same model incorporated into the CE-QUAL-ICM model on which the estuarine 

model WQSTM is based.  However, for the CPMBM, the model was modified by HDR to allow 

simulation of multiple sediment layers and the impact of scour and deposition on the sediment 

bed and fluxes of particulate organic matter (POM) and dissolved materials to the water column.  

The POM (POC, PON, POP) is subdivided into separate G-classes representing their reactivity.  

These supporting studies and observations can be considered to represent the best science 

presently available. 

In Section 10.7.2 of the model documentation provided, the CBP modelers addressed the three 

CBP Modeling workshop questions.   
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(a) With regard to question 1 above, the CBP modelers indicated that the weight of evidence 

suggests that the three reservoirs in the LSRRS are currently in dynamic equilibrium.  

That conclusion seems to be well supported.   

(b) With regard to question 2 above, the CBP modelers, based on recommendations from the 

CBP Modeling Workgroup, determined that the P6 WSM can be calibrated to WRTDS 

loads, since WRTDS matches the observed change in the reservoir behavior over time.  

The CBP modelers calibrated scour and deposition parameters and their change over time 

based on WRTDS which formed the basis of the methodology discussed in 10.7.3.  In 

using the WRTDS as the basis for scour and deposition parameters the CBP modelers 

also adequately addressed the issue identified in the above question 2. 

(c) With regard to question 3 above, the CBP modelers indicated they are retaining the 

assumption of constant delivery ratios in the P6 WSM.  The assumption is that the 

trapping efficiency for nutrients does not change in response to changes in nutrient 

inputs.  That assumption also seems well supported by multiple lines of evidence.  As 

indicated, the Exelon-supported model results for nutrients (application of the CPMBM 

by HDR, Exelon April 2017) supported the idea of a linear behavior in response to 

decreases or increases in nutrients delivered to Chesapeake Bay from the watershed and 

Conowingo Pond. 

(d) With regard to question 4 above, the CBP modelers address the reactivity of the organics 

as a function of flow based on results from the Exelon supported Conowingo Pond Mass 

Balance Model (CPMBM) developed by HDR and GSE.  In the Exelon supported study, 

HDR applied both a stand-alone version of the sediment flux model and the CPMBM 

which included linked hydrodynamic, water quality and sediment flux models.  The 

CPMBM sediment flux model was modified by HDR to include multiple layers (previous 

versions were a static 2-layer model) to allow the incorporation of the impacts of scour 

and deposition.  The model could then be used to estimate the reactivity of POM in the 

sediment bed and resuspended POM.  The sediment flux model subdivides particulate 

organic matter (POM; POP, PON and POC) into G classes, including G1 (labile; half-life 

of weeks to months), G2 (refractory; half-life on the order of a year), and G3 (inert 

components).  The CBP modelers used relationships developed by the CPMBM to 

specify the G-class distribution of TP and TN as a function of flow (Table 10-25).  The 

approach taken by the CBP modelers seems reasonable and based on the best information 

available.  The approach taken also addresses STAC questions 2a and 2c.  The multi-

layer sediment flux model developed by HDR could also be considered for 

implementation in a future version estuarine model WQSTM in response to the STAC 

recommendation 3. 

In addressing question 2, above, from the CBP Modeling Workgroup, STAC recommendation 2 

was also addressed.  That is the results from WRTDS were incorporated to ensure representation 

of the effects of Conowingo inputs to Chesapeake Bay for the full range of flow conditions 
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including ‘extreme’ high-flow events.  In addressing question 4, above, from the CBP Modeling 

Workgroup recommendation 2 the STAC recommendations have also been addressed by 

incorporating the results from the Exelon supported studies that included simulation of the 

biogeochemical cycling of POM and the reactivity of the POM exported from the Conowingo 

Pond.  The STAC recommendations were also addressed in more detail and more specifically in 

10.7.4. Section 10.7.4 also addressed question 3, above for the next generation of the tidal water 

quality and sediment transport model.  As stated above, the sediment flux model modifications 

implemented by HDR in the application of the CPMBM can also be considered as a basis for 

future modifications to the WQSTM model as in STAC recommendation 3. 

STAC recommendation 1, above was addressed in 10.7.3.  That recommendation was that efforts 

to model the effects of Conowingo on net accumulation or release of nutrients and sediment from 

the reservoir should be evaluated based on its ability to “hind cast” data from water quality 

observations and statistical analyses.  The CBP modelers described a 4-step process whereby the 

WSM was calibrated to WRTDS.  For hindcasting, the model parameters representing the 1990s 

condition were gradually varied to the parameters identified in Steps representing the 2010s 

condition.  The CBP modelers also developed long-term trapping efficiencies for sand silt and 

clay delivery from the results of the Exelon supported HEC-RAS study of the LSRRS including 

Lakes Clarke and Lake Aldred.  The approach for the LSRRS, including Conowingo Pond, 

seems reasonable given that the WSM cannot simulate changes in deposition and scour with the 

change in bathymetry or infill, so that those processes must be parameterized. 

The discussion provided in 10.7 suggests that the P6 WSM representation of the Conowingo 

Pond is based on the best science presently available.  The P6 WSM revisions are based largely 

upon the WRTDS application and the LSRRS models supported by Exelon, including the HEC-

RAS application and the Conowingo Pond hydrodynamic, mass balanced and sediment flux 

models.  However, there are few data to support those model applications.  In particular, there 

are few data available within Conowingo Pond and few data available for high flow events 

within or below the Conowingo Pond.  Therefore, any conclusions regarding whether the 

simulations approximately represent the observed changes in storage of sediment, nitrogen and 

phosphorus as seen in the historical record from the last few decades (question 9B) are limited by 

the data in those records, emphasizing the need for additional field data in future studies to 

support modeling efforts. 

Recommendations 
(a) Section 10.7 needs stronger organization and a more detailed discussion of the model 

components, and how these components ultimately tie together to generate WSM model 

predictions.  The CBP modelers responded to STAC reviewer questions regarding 

Section 10.7 in a memo on 7/13/2017.  That response clarified a number of the questions 

regarding the application and the response should be considered in part or whole for 

incorporation into Section 10.7.  
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(b) The final charge question (9C) asked how the representation of Conowingo infill can be 

improved going forward beyond the P6 WSM.  The P6 WSM revisions were largely 

informed and supported by a powerful set of models of the LSRRS, including WRTDS, 

HEC-RAS, the sediment-flux model (stand-alone), the 3-dimensional ECOM-SED 

hydrodynamic and sediment transport model, and the RCA model which was the basis for 

the CPMBM.  A recommended approach would be to mine these models to identify data 

deficiencies, developed improved data plans and continue to support and develop these 

models in conjunction with the WSM in an iterative fashion to develop an improved 

understanding of processes in the LSRRS and how they impact management questions 

and to support adaptive management.  

Specific Comments Regarding Model Documentation 
(a) It would be helpful if all of the P6 WSM inputs and outputs to and from Conowingo Pond 

be tabulated and their source identified.  Presently 10.7 discussions are limited to 

sediments, PON and POP. 

(b) In 10.7.2 the CBP modelers described their approach for total suspended solids.  

However, for the results from HEC-RAS the CBP modelers (7/13/2017 memo) indicated 

that sand, silt and sand fractions were considered.  Discussion should be provided as to 

how each of those fractions were considered in the simulation of suspended sediments in 

the Conowingo Pond and its exports.  

(c) In the discussion in section 10.7.2 it is not clear how the dynamic steady state assumed 

for sediments and nutrients will be incorporated into P6 WSM simulations. 

(d) The responses to the questions also focused on suspended solids and particulate nitrogen 

and phosphorus.  POC was not discussed nor were dissolved constituents.  Per the first 

comment, all of the constituents simulated to and through the Conowingo Pond should be 

discussed. 

(e) In the 20170712 - Phase 6 WSM Review Responses the CBP modelers indicated that 

Table 10-25 was derived from figures in a presentation by Qian Zhang et al. on 

02/14/2017 (Slides III-7 to III-12).  However, the Conowingo Pond mass Balance Model 

on which the figures were based was not submitted for peer review until April 2017.  It is 

recommended that the finalized results from the CPMBM be reviewed to ensure that the 

equations in 10-25 are still applicable and the interpretation appropriate.  

(f) In 10.7.2.2 there was discussion of concentrations and loads but no explicit indication of 

concentrations and loads of what.  Was the analysis conducted for solids, nitrogen and 

phosphorus (only SS illustrated in Figure 10-69; note that panels a and b appear to be 

reversed in that figure)? 

(g) Expand the discussion on the 4 steps of the iterative calibration process in 10.7.3 per the 

review questions and response in the 7/14 memo. 
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(h) In Table 1 there are columns for the Conowingo Infill Scenarios and for the Climate 

Change Scenarios. Since these are shown as percent change, we wanted to be sure we 

understood what the percentages in the Climate Change columns represent – are these 

percentages of the values achieved AFTER differences associated with the infill 

scenarios are accounted for? 

(i) Figures 5 and 6 illustrate comparisons of predictions to observations for the Susquehanna 

at Conowingo for suspended solids and for phosphorus.  The panels showing the 

comparison between simulated and observed values and the comparisons of the 

cumulative distributions are interesting and raise a question.  For suspended sediment and 

for phosphorus the fitted linear trend between simulated and observed departs from the 

dotted 1:1 line and to a much greater extent for phosphorus than for suspended sediment.  

This presumably accounts also for the difference in shape of the cumulative distributions 

for both parameters.  However, the comparison of monthly loads for both parameters 

after the 4-stage model calibration and the Nash-Sutcliffe efficiencies for both annual and 

monthly loads appear to show a closer fit than one might guess after looking at figures 5 

and 6. It would be helpful to have some explanation associated with these figures to clear 

this up. 

Question 10. Please comment on the scientific appropriateness of the methods used in the 
representation of climate change in watershed nutrient and sediment loads estimated for the 2025 
and 2050 time periods. 

Overview 
The P6 WSM incorporates an assessment of the influence climate change has on Chesapeake 

Bay water quality, which is necessary as a contribution to the Midpoint Assessment.  CBP 

decision makers need this information to determine if and when climate change impacts should 

be incorporated into the jurisdictions’ Watershed Implementation Plans (WIPs).  

The treatment of climate change scenarios in the P6 WSM is a response to recommendations 

from STAC and others that the Bay Program integrate consideration of climate change into the 

management framework to embed climate change among partnership goals in decision making, 

identify and prioritize vulnerabilities of restoration efforts and management actions, and use 

partners’ ongoing research efforts to better assess and evaluate responses to changing climatic 

conditions. 

The modeling team focused primarily on projections of precipitation volume and intensity, 

temperature, and evapotranspiration as inputs to the watershed model.  Other projections, such as 

future sea level, were incorporated into the Water Quality and Sediment Transport Model 

(WQSTM) of the tidal Bay, and were not under review by this panel. 

Decisions in regard to which scenarios to use were based on recommendations provided by the 

2016 STAC workshop on Climate Change in the Chesapeake (Johnson et al. 2016).  Projections 

were generated for the 2025 and 2050 target dates.  The Coupled Model Intercomparison Phase 5 
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(CMIP5) set of Global Climate Models as described in the IPCC Fifth Report (IPCC 2013) were 

employed in the assessment of temperature trends for both 2025 and 2050 and projections were 

made for alternative sets of Representative Concentration Pathways (RCP) scenarios.  

As is common for climate models, the expected changes in temperature are in much better 

agreement among the various models than is the case for precipitation projections.  For this 

reason the model projections were used for temperature for both 2025 and 2050.  However, for 

2025, the 2016 STAC Climate Change Workshop recommended that precipitation scenarios 

should be based on extension of long-term observed trends in intensity, duration, and frequency 

of precipitation events, and the modeling team followed this recommendation.  For 2050 it was 

recommended, and the modeling team followed the recommendation, that the P6 WSM utilize 

the CMIP5 projections of precipitation change.  

The delta method was employed using downscaled GCM results, as described in the 

documentation provided to the review team.  Median estimates from the suite of models were 

chosen as the expected change for the 50th percentile.  Estimates were also developed for the 10th 

and 90th percentiles for both 2025 and 2050.  

The P6 WSM makes a significant change in the approach used to estimate potential 

evapotranspiration (PET), relying on the guidance provided by P.C. Milly in the STAC Climate 

Change Workshop.  The Hargreaves-Samani approach was found to produce a more realistic 

response to temperatures than the Hamon approach that was used in the P5.3.2 WSM. 

Members of the review team assigned to this question examined the documentation and provided 

questions to the modeling team about several issues, followed by a conference call to follow-up 

on some of the answers provided in written form.  The panel is in agreement with the choices 

made and recognize that they are consistent with the recommendations of the 2016 STAC 

Climate Change Workshop, and we agree further that the methodology used consists of the best 

available science and are appropriate for use in developing scenarios of nutrient and sediment 

loads for the 2025 and 2050 time periods.  However, we have several recommendations outlined 

below. 

Recommendations 
(a) Bias Corrections and Downscaling:  More information is needed about the bias 

corrections and the results of the hindcast, as well as showing some monthly or annual 

time series of the output, if available.  The documentation should also clarify which data 

and models were actually used.  For example, for the 2050 model estimates, it would be 

useful to explain more clearly the link from the CCIP5 ensemble projections and BCSD 

downscaling to the delta-method estimates of precipitation.  It should be fairly 

straightforward but a figure or two and some text would clarify where these estimates 

came from.  Using bias corrections in the projections based on biases between model and 

historical observation assumes the future bias is the same as the historical bias.  Some 

discussion about why this is not problematic would be useful. 
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(b) Precipitation:  The reviewers understand that the STAC Climate Change Workshop 

recommended using precipitation projections for 2025 based on extending the historical 

record, and that projections for 2050 should be based on the ensemble model projections.  

As the 2025 precipitation estimates are based on linear trends developed from the 87-year 

PRISM records at the county level, it would be helpful to clearly demonstrate how the 

well the regressions fit the historical data.  It would be useful to see one or two examples 

of the actual trend analysis and projections.  

It was shown in recent presentations that the projections from the historical record are not 

unlike the mean results from the ensemble, albeit with the latter having wider error 

envelopes.  Because 2025 is only 8 years out from the present, reviewers are in 

agreement that it is reasonable to use these projections.  However, given this concurrence 

in the means, it would be useful to carry forward the watershed model results driven from 

both approaches.  This could be especially important in comparing the relative 

uncertainties.   

It appears the transition in the future from snow to rain had significant impacts on 

evapotranspiration and the time frame of delivery of water and nutrients.  This should be 

explored in more detail. 

(c) Flow and Nutrient Flux:  The projected increases in Flow, N, P, and sediment derived 

from the projected increases in precipitation clearly are dependent in large part on the 

way that the precipitation increases are parsed across the intensity deciles and this is in 

turn defines the runoff response and loads.  The summary table 11.2.3 is not enough by 

itself to explain the nature of how these results are derived for the climate scenarios.  

Although the description of the change in runoff modeling approach (particularly with 

regard to evapotranspiration) is clear, it is not clear how the quantitative predictions of 

increased flow, N, P and sediment are derived from the climate model scenarios.  More 

specifically, how are the increased loads related to projected changes parsed by intensity 

deciles, and how are the N and P increases parsed in terms of dissolved vs particulate 

forms and what is the basis for this?  Since there is a discussion of an alternative 

modeling scenario based on assuming uniform increase across all deciles, perhaps there is 

also some indication of the sensitivity of these results to the distribution of precipitation 

intensity increase across deciles.  It would be helpful to know more about this given its 

importance to the midpoint assessment.  

The discussion of nitrogen sensitivity to flow was somewhat surprising in the level of 

uncertainty implied.  The ratio of percent N change to percent flow change was 

determined from the model to be 0.7.  The USEPA 2013 study provided very different 

results and much larger ratios for the Susquehanna watershed, and even though that was 

an outlier, the projections for other watersheds were still mostly larger than 1 and 

averaged 1.5.  The choice of 1.0 to be used here seems like something of a stopgap 

choice.  Given the importance of the ratio chosen, the final statement leaves one 
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wondering what the path forward is on this issue:  "Given the wide variability in 

outcomes a ratio of 1 is selected for initial study with additional input being sought."  It 

would help to have some clarification on what additional input might be of use. 

Specific Comments Regarding Model Documentation 
(a) In general, the documentation could be more explicit about how exactly it is drawing 

from sources and showing the basis for projections rather than just citing sources and 

including a few figures, particularly as they relate to the bias correction and model 

hindcasting skill.  

(b) There are a couple of discrepancies between the text and figures 11.2.2.2 and 11.2.2.4 - in 

both case the increase for 2050 does not match the value cited in the text 

(c) Incorporate a more rigorous analysis of the uncertainty surrounding the use of climate 

projections, and how those uncertainties propagate through the watershed model to 

impact management decisions.  

(d) Provide additional justification and explanation for the selection of nitrogen to flow ratio, 

how sensitive are the results to this ratio?  

Question 11. For longer term CBP considerations, how can the overall approaches and procedures 
used in Phase 6 be improved and what alternative approaches and data gathering might you 
recommend?  

Overview 
In an effort for continual improvement in the CBP WSM the panel recommendations center 

around several overarching themes:  a) further exploiting the multi model approach to develop a 

true ensemble model; b) more formalized optimization techniques; c) evaluation of model 

uncertainty (e.g., via Bayesian techniques); d) development of higher spatial resolution models to 

inform management; e) further refining the consensus based approach to the BMP expert panels; 

and f) developing improved modeling strategies for key processes that are not adequately 

quantifiable based on available scientific knowledge (e.g., identifying and quantifying sediment 

sources, estimating sediment lag times, etc.).  Additional detail and recommendations for each of 

these points are given below. 

Recommendations 
(a) Moving forward, the P6 WSM could benefit from several approaches, in particular the 

development of a true ensemble modeling framework, which is easily accomplished (for 

the land segments), given the existing multilevel modeling approach.  In this approach, 

rather than using averages from multiple model outputs as input to the single, overall 

model, each input model (or combinations of input models) are used as input to the 

overall model.  The overall model thus produces several results that can be summarized 

as averages with error characteristics.  This ensemble approach allows one to sample the 

uncertainties in both the initial conditions and model formulation through the variation of 
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input data, analysis, and methodologies of the ensemble members.  As such, this 

approach will be less likely to result in systematic errors and exhibit less variation than 

would be expected in single-model prediction systems, ultimately allowing the CBP to 

develop metric of uncertainty, and perhaps better target land segments acting as critical 

source areas.  The multiple solutions also provide options to select more or less 

conservative management targets.  Weighted averaging and Bayesian methods can 

improve multi-model ensemble integration. 

(b) As mentioned for question 1, there’s value in considering the use of a model structure 

that could accommodate the formal use of optimization techniques in which the source 

generation, land-to-water delivery, and aquatic transport are simultaneously estimated.  

This would provide a more statistically rigorous mass balance method than the current 

approach, and would allow for an explicit accounting of model error.  

(c) This type of optimized model structure is also well-suited for the use of Bayesian 

methods, including their application with hierarchical (nested) model structures, 

especially for the linear static model.  Bayesian methods have several advantages.  First, 

the methods allow an explicit accounting of the uncertainties in stream monitoring load 

estimates, BMP efficiency estimates, and other model components.  As noted in the 

group discussions, one option is to treat the BMP efficiencies, which are derived from 

expert panel assessments, as prior information in a Bayesian structure, thereby providing 

a more precise accounting and evaluation of the BMP uncertainties in the model.  

Second, a hierarchical Bayesian structure would permit one or more of the model 

parameters to be treated as random variables that vary spatially.  This would allow model 

processes and predictions to be more sensitive to sub-regional and local variations in 

water-quality conditions, which in the current P6 WSM may contribute to prediction 

biases.  Bayesian methods are currently being used and refined for SPARROW, which 

could potentially serve as a guide for their use in future Chesapeake Bay steady state 

models.  

(d) Some additional thought might be given as to whether a higher resolution steady state 

model should be developed.  An important question is whether the current 2,200 

segmentation (large-river) stream network for the P6 WSM is sufficiently detailed or 

should be refined to provide more spatially resolved information on sources and land-

water transport, which could inform within-state allocations.  In the group discussions, it 

was acknowledged that there would be value in providing small-scale information to help 

inform local needs to target conservation and manage inputs, yet it was recognized that 

the uncertainties in model predictions generally increase with reduced spatial scale.  

Model accuracy is limited by monitoring that occurs more commonly in large rivers and 

by county-scale data for certain model inputs.  However, accuracy is also potentially 

enhanced by high resolution land use and climate data that are currently used in all of the 

watershed models.  The P6 river segmentation causes a loss of resolution and spatial 
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variability in the modeled process interactions between sources and transport factors that 

are currently obtained from the NHD SPARROW model, which operates with ~80,000 

reaches.  Stakeholders may benefit from having access to predictions from a CB model 

with a spatial resolution that falls between that of the SPARROW NHD and the P6 WSM 

segmentation.  

(e) With regard to assigning BMP efficiencies, concerns from the previous model persist:  

“Removal efficiencies of BMPs are known to be dependent on climate, flow rates, 

hydrogeologic setting, and implementation and maintenance conditions.  Within the 

External Transfer Module (ETM) framework, these efficiencies are currently fixed at 

constant values.  However, they could either be sampled from a distribution function 

(with form and bounds set from the literature, ideally tied to the hydrogeologic setting or 

conditioned on flow rates (if appropriate)).  This would allow "breakthrough" of sediment 

and nutrients for a subset of the population of BMPs, which could have important 

downstream impacts.” 

(f) There was concern about the consensus-based approach for establishing BMP efficiencies 

through expert panels without an explicit basis/approach to evaluating uncertainty.  

Expert panels should be encouraged to incorporate or develop understanding of 

uncertainty/risk associated with estimated efficiencies.  For example, the range of 

opinions about BMP efficiencies that are reflected in expert panel discussions should be 

preserved to support uncertainty analyses; unfortunately, this information is lost in the 

current approach.  As mentioned above, a Bayesian estimation framework would enable 

use of this information in establishing priors and associated uncertainties.  There was also 

concern about the limited evaluation and discussion of uncertainty, in general, and its 

implications for both management and research.  

(g) The BMP expert panels should recognize that that mean retention efficiencies derived 

from the literature represent a model of expected outcomes.  The BMP expert panels 

represent a model of expected outcomes and should be encouraged to refine these models 

in a way that describes BMP performance in relation to location and climate/seasonal 

weather/event condition.  This focus on process-oriented, local-scale models may be 

where we can encourage development of relatively simple models to represent competing 

hypotheses of system dynamics and best leverage the advantages/opportunities presented 

through Bayesian modeling.  

(h) The CBP should take greater advantage of intermediate modeling products to better 

understand seasonal dynamics, also to better understand storm-based loads, critical to 

understanding BMP performance. 

(i) As noted in the answer to question 7, many changes should be considered in the future to 

improve the approach for sediment modeling.  
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Question 12. Please comment on the Phase 6 documentation.  Is it clear, well organized, concise, 
and complete (taking into account that it is the third Beta out of an expected four Beta versions 
and about six months ahead of final release)? 

Overview 
The review team was generally impressed with the documentation, particularly compared to the 

Phase 5 documentation.  While the vast majority of recommendations related to the 

documentation are encompassed in the specific comments for each section, there are some 

additional recommendations and comments detailed below. 

Recommendations/Comments 
(a) Document needs stronger organization that will facilitate a more well-rounded and 

complete discussion of the model components, and further, how these components 

ultimately tie together to generate P6 WSM model predictions.  Specifically: 

I. The opening chapter should be divided into two, with one outlining the decision 

contexts, the questions the P6 WSM model is designed to address, and 

bureaucracy associated with model development and use, and the other providing 

a general overview of the model conceptualization and structure.  This second 

part needs to provide a more comprehensive coverage of method and approach, 

describing the data-driven methodology, which represents a marked evolution in 

the CBP approach.  

II. The opening chapter also needs to present a clearer conceptual diagram, with all 

of the source/transport components.  There’s also value in considering the 

presentation of a supporting model equation to identify how the various 

components are linked together and processed. 

III. Consider implementing a parallel organization structure for subsequent sections.  

For example, adopt the ‘traditional’ modeling framework to describe individual 

model components:  i) system conceptualization (ideally including a “cartoon” or 

flowchart figure); ii) model selection and ‘code’ description; iii) model design 

(e.g., spatial scale, boundary conditions, input data, etc.); iv) calibration; v) 

sensitivity analysis/uncertainty assessment; vi) verification; and vii) predictions 

(ideally along with estimates of uncertainties). 

IV. Given that the introduction to SPARROW in Section 7 (Equation 7-1) applies to 

Sections 2, 7, and 9, this material might be more appropriate to locate in the 

introduction (Section 1), where a more comprehensive treatment could be given to 

the overall model concepts.  The material also might be located within a section 

that provides an introduction and background for the three modeling approaches 

that are used for P6.  
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(b) Additional discussion is needed as to how the steady state model is used to inform the 

operation of the transient model.  For example, the text should clarify whether the 

biogeochemical process rates in the HSPF transient model are active or whether 

components of the steady state model (e.g., land-to-water delivery) are used as surrogates 

for these processes.  Additionally, in the case of aquatic decay in streams and reservoirs, 

it would be helpful to clarify the sensitivity of the two models to different processes.  The 

transient HSPF model simulates time-varying nutrient processes, associated with algal 

uptake and denitrification, which are then adjusted to be generally consistent with long-

term averages of in-stream decay estimated by SPARROW.  The SPARROW long-term 

average decay rates are associated with long-term storage or permanent removal 

processes, and thus should be acknowledged to differ from those in the transient model.  

(c) More discussion is also needed in regard to the transient components for estimating time-

lags in the watersheds, based on the two models:  UNEC (with exponential decay 

imposed) and rSAS (gamma distribution to pull from different groundwater layers that 

reflects application timing as well).  It would be informative to include some of the 

details that were given in the group presentations and discussions, such as how time 

series of nutrients exports are determined for hourly (or monthly) edge of small stream 

(EOSS) export using the basic inputs (fertilizer, etc.), and how this is derived to ensure 

that the sum is equivalent to the steady state mean.  

(d) More and clearer discussion is also needed to describe the approach to sediment lag 

times.  During the review panel/CBP modelers group meeting, some specific methods 

were described to account for some lags between sediment production and delivery, but 

these are not described adequately in the documentation.   

(e) Table 1-2 is unclear and distracting to understanding document layout; needs column 

headings and caption.  Perhaps move to program history section.  Also, cross-walk with 

recommendations from CBP P5 review panel. 
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Appendix A 

Phase 6 Peer Review Questions: 

From the Charge to the Panel:  “The Chesapeake Bay Program (CBP) partnership requested a 

scientific review that directly addresses the following questions.  The review committee was also 

encouraged to make recommendations for future work by the CBP partnership that build on the 

questions or are related to the scientific or management issues raised in the Phase 6 peer review.  

The review committee was provided with relevant documentation, a detailed briefing, and access 

to CBP modeling practitioners.  The review committee generated this report for submittal to CBP 

through the chairs of the Modeling Workgroup and the Modeling Coordinator.  The Modeling 

Workgroup will ensure the STAC peer review record includes responses to the peer review 

panel’s comments.”  

The charge questions outlined in that document as “Questions/Requests for STAC Review of the 

Phase 6 Watershed Model” are as follows (note that reference to sections in each question refers 

to the model documentation provided to the Panel by the CBPO): 

1. Please comment on the overall appropriateness of the approach taken in the Phase 6 structure 

of a deterministic hydrology and sediment transport management model combined with a 

nutrient model informed by multiple models and multiple lines of evidence as described in 

Section 1.  Please comment on the multiple model structure of the Phase 6 nutrient 

simulation particularly to its utility to watershed management in the Chesapeake restoration?  

How can the Phase 6 multiple model approach be improved going forward?  

2. Please comment on the scientific rigor of the methods used for the average nutrient export 

rates described in Section 2.  Are they calculated appropriately?  Is there any additional 

scientific information that should be included? 

3. In Section 4, how justified are the sensitivities of nutrient export from land uses to nutrient 

inputs, given the approach used and data available?  Do the sensitivities to nutrient inputs 

derived from multiple models reflect our best understanding of the current condition of 

nutrient load processing and attenuation on the landscape?  Is there any additional scientific 

information that should be included? 

4. Please comment on the scientific rigor of the methods used in the use of Spatially Referenced 

Regression On Watersheds (SPARROW) for land to water factors in Section 7.  Are they 

reasonably implemented?  Is there any additional scientific information that should be 

included? 

5. Please comment on the overall appropriateness of the methods used in the application of 

multiple methods to estimate stream-to-river factors for nutrients in Section 9?  Is there 

additional scientific information that should be included? 

6. Please comment on the scientific appropriateness of the approach taken for Phase 6 lag times 

described in Section 10 given the current state of information and understanding of 

groundwater and particulate processes.  How can the structure and processes of nutrient lag 

time simulation on the land be improved in Phase 6 or future watershed model applications?  
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Is the application of the Ranked Storage Selection (rSAS) function for groundwater nitrate 

and Unit Nutrient Export Curves (UNEC) for all other nutrient species appropriate for the 

management questions? 

7. Please comment on the scientific rigor of the methods used in the Phase 6 sediment 

simulation components using a detailed Revised Universal Soil Loss Equation 2 (RUSLE2) 

(Section 2), an interconnectivity metric (Section 7), and the inclusion of sediment source/sink 

estimates from stream banks and flood plains (Section 9). 

8. Given the fine scale 1m x 1m land use data that’s used in Phase 6, what opportunities does 

this open to the CBP and scientific community in the next phase of watershed model 

development?  What are the advantages in a distributed representation of hydrology, land 

cover, and sediment?  Given the availability of nutrient inputs from Agricultural Censes at 

the county scale only does a higher resolution of the watershed model make sense? 

9. Better simulation of the deposition and scour processes in the reservoir reach of the Lower 

Susquehanna is an important feature of the Phase 6 Model.  It is crucial to 2017 Midpoint 

Assessment decision making to be able to represent the net deposition of sediment, nitrogen, 

and phosphorus in this reach of the Susquehanna as fully as possible. Does the Phase 6 

representation of the dynamics of the reservoir system rely on the best science available at 

this time?1 Do the simulations approximately represent the observed changes in storage of 

sediment, nitrogen and phosphorus as seen in the historical record from the last few decades? 

How can the representation of Conowingo infill be improved going forward beyond the 

Phase 6 Model? 

10. Please comment on the scientific appropriateness of the methods used in the representation of 

climate change in watershed nutrient and sediment loads estimated for the 2025 and 2050 

time periods.  How well do the models used for producing future climate scenarios show skill 

in hindcasting the actual climatic and hydrologic changes that have happened over the past 

several decades? 2 

11. For longer term CBP considerations, how can the overall approaches and procedures used in 

Phase 6 be improved and what alternative approaches and data gathering might you 

recommend?  

12. Please comment on the Phase 6 documentation.  Is it clear, well organized, concise, and 

complete (taking into account that it is the third Beta out of an expected four Beta versions 

and about six months ahead of final release)? 

 

                                                           
1 Note that the Phase 6 Watershed Model is informed by other models and analyses including WRTDS and the 

Conowingo Pool Model.  The Phase 6 Model reviewers are asked to address specifically the structure and 

calibration of the Phase 6 Model rather than these complementary tools which have their own ongoing independent 

peer reviews. 
2 Following deliberation with the CBPO during Phase 2 of the review, it was determined that adequate 

documentation was not available for reviewers to answer this specific question.  It was removed from consideration 

on July 6, 2017. 


